Compare commits
2 Commits
cc69233487
...
b7113ae388
Author | SHA1 | Date |
---|---|---|
NiiiCo | b7113ae388 | |
NiiiCo | 1ed42de47b |
|
@ -0,0 +1,3 @@
|
|||
__pycache__/
|
||||
set/
|
||||
|
13
RUN.py
13
RUN.py
|
@ -3,19 +3,18 @@
|
|||
import mnist_loader
|
||||
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
|
||||
|
||||
print(list(training_data)[0][1])
|
||||
|
||||
import network
|
||||
import dataset_loader
|
||||
|
||||
#net = network.Network([784, 30, 10]) #Testé : 94,56%
|
||||
#net.SGD(training_data, 10, 10, 3.0, test_data=None)
|
||||
#print("Results : {} / 10000".format(net.evaluate(test_data)))
|
||||
net = network.Network([262144, 30, 10]) #Testé : 94,56%
|
||||
net.SGD(dataset_loader.loadTrainingSet("training"), 30, 10, 3.0, test_data=dataset_loader.loadTestSet("test"))
|
||||
|
||||
# net = network.Network([784, 100, 10]) #Marche mieux apparemment
|
||||
# net = network.Network([784, 100, 10]) #Marche mieux apparemment
|
||||
# net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
|
||||
|
||||
# net = network.Network([784, 100, 10]) #Marche pas bien apparemment
|
||||
# net.SGD(training_data, 30, 10, 0.001, test_data=test_data)
|
||||
|
||||
# net = network.Network([784, 30, 10]) #Marche pas du tout apparemment
|
||||
# net.SGD(training_data, 30, 10, 100.0, test_data=test_data)
|
||||
# net.SGD(training_data, 30, 10, 100.0, test_data=test_data)
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,90 @@
|
|||
from mnist_loader import load_data
|
||||
import numpy as np
|
||||
import os
|
||||
from PIL import Image
|
||||
import resource
|
||||
|
||||
|
||||
def vectorized_result(j):
|
||||
"""Return a 10-dimensional unit vector with a 1.0 in the jth
|
||||
position and zeroes elsewhere. This is used to convert a digit
|
||||
(0...9) into a corresponding desired output from the neural
|
||||
network."""
|
||||
e = np.zeros((10, 1))
|
||||
e[j] = 1.0
|
||||
return e
|
||||
|
||||
def loadSet(path):
|
||||
|
||||
filelist = []
|
||||
|
||||
for root, dirs, files in os.walk(path):
|
||||
for file in files:
|
||||
filelist.append(os.path.join(root,file))
|
||||
|
||||
i = 0
|
||||
pixels = []
|
||||
result = []
|
||||
|
||||
|
||||
for name in filelist:
|
||||
|
||||
if i >= 100:
|
||||
|
||||
break
|
||||
|
||||
if ".png" in name:
|
||||
|
||||
with Image.open(path + "/" + name.split("/")[-1]) as im:
|
||||
|
||||
pix = im.load()
|
||||
temparray = []
|
||||
|
||||
result.append(name.split("/")[-1][0])
|
||||
|
||||
for x in range(im.size[0]):
|
||||
|
||||
for y in range(im.size[1]):
|
||||
|
||||
temparray.append(pix[x, y] / 255)
|
||||
|
||||
pixels.append(temparray)
|
||||
print(temparray)
|
||||
print(str("%.2f" % round(i / (len(filelist) if len(filelist) < 100 else 100) * 100, 2)) + "% Done, ram usage: " + str("%.2f" % round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024*1024), 2)) + "Go", end = '\r')
|
||||
i += 1
|
||||
|
||||
print("max ram usage: " + str(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024*1024)) + "Go")
|
||||
|
||||
return (pixels, result)
|
||||
|
||||
|
||||
def loadTrainingSet(path):
|
||||
|
||||
print("importing training set...")
|
||||
|
||||
set = loadSet(path)
|
||||
|
||||
training_inputs = [np.reshape(x, (262144, 1)) for x in set[0]]
|
||||
training_results = [vectorized_result(int(y)) for y in set[1]]
|
||||
training_data = zip(training_inputs, training_results)
|
||||
|
||||
return training_data
|
||||
|
||||
def loadTestSet(path):
|
||||
|
||||
print("importing test set...")
|
||||
|
||||
set = loadSet(path)
|
||||
|
||||
test_inputs = [np.reshape(x, (262144, 1)) for x in set[0]]
|
||||
test_data = zip(test_inputs, set[1])
|
||||
|
||||
return test_data
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
print(loadSet("set")[0])
|
BIN
mnist.pkl.gz
BIN
mnist.pkl.gz
Binary file not shown.
|
@ -147,3 +147,6 @@ def sigmoid(z):
|
|||
def sigmoid_prime(z):
|
||||
"""Derivative of the sigmoid function."""
|
||||
return sigmoid(z)*(1-sigmoid(z))
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue