TIPE-OperationValkyrie/dataset_loader.py

90 lines
1.8 KiB
Python

from mnist_loader import load_data
import numpy as np
import os
from PIL import Image
import resource
def vectorized_result(j):
"""Return a 10-dimensional unit vector with a 1.0 in the jth
position and zeroes elsewhere. This is used to convert a digit
(0...9) into a corresponding desired output from the neural
network."""
e = np.zeros((10, 1))
e[j] = 1.0
return e
def loadSet(path):
filelist = []
for root, dirs, files in os.walk(path):
for file in files:
filelist.append(os.path.join(root,file))
i = 0
pixels = []
result = []
for name in filelist:
if i >= 100:
break
if ".png" in name:
with Image.open(path + "/" + name.split("/")[-1]) as im:
pix = im.load()
temparray = []
result.append(name.split("/")[-1][0])
for x in range(im.size[0]):
for y in range(im.size[1]):
temparray.append(pix[x, y] / 255)
pixels.append(temparray)
print(temparray)
print(str("%.2f" % round(i / (len(filelist) if len(filelist) < 100 else 100) * 100, 2)) + "% Done, ram usage: " + str("%.2f" % round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024*1024), 2)) + "Go", end = '\r')
i += 1
print("max ram usage: " + str(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024*1024)) + "Go")
return (pixels, result)
def loadTrainingSet(path):
print("importing training set...")
set = loadSet(path)
training_inputs = [np.reshape(x, (262144, 1)) for x in set[0]]
training_results = [vectorized_result(int(y)) for y in set[1]]
training_data = zip(training_inputs, training_results)
return training_data
def loadTestSet(path):
print("importing test set...")
set = loadSet(path)
test_inputs = [np.reshape(x, (262144, 1)) for x in set[0]]
test_data = zip(test_inputs, set[1])
return test_data
if __name__ == "__main__":
print(loadSet("set")[0])