suyu/src/common/minicoro.h

2077 lines
74 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
Minimal asymmetric stackful cross-platform coroutine library in pure C.
minicoro - v0.2.0 - 15/Nov/2023
Eduardo Bart - edub4rt@gmail.com
https://github.com/edubart/minicoro
Minicoro is single file library for using asymmetric coroutines in C.
The API is inspired by Lua coroutines but with C use in mind.
# Features
- Stackful asymmetric coroutines.
- Supports nesting coroutines (resuming a coroutine from another coroutine).
- Supports custom allocators.
- Storage system to allow passing values between yield and resume.
- Customizable stack size.
- Supports growable stacks and low memory footprint when enabling the virtual memory allocator.
- Coroutine API design inspired by Lua with C use in mind.
- Yield across any C function.
- Made to work in multithread applications.
- Cross platform.
- Minimal, self contained and no external dependencies.
- Readable sources and documented.
- Implemented via assembly, ucontext or fibers.
- Lightweight and very efficient.
- Works in most C89 compilers.
- Error prone API, returning proper error codes on misuse.
- Support running with Valgrind, ASan (AddressSanitizer) and TSan (ThreadSanitizer).
# Supported Platforms
Most platforms are supported through different methods:
| Platform | Assembly Method | Fallback Method |
|--------------|------------------|-------------------|
| Android | ARM/ARM64 | N/A |
| iOS | ARM/ARM64 | N/A |
| Windows | x86_64 | Windows fibers |
| Linux | x86_64/i686 | ucontext |
| Mac OS X | x86_64/ARM/ARM64 | ucontext |
| WebAssembly | N/A | Emscripten fibers / Binaryen asyncify |
| Raspberry Pi | ARM | ucontext |
| RISC-V | rv64/rv32 | ucontext |
The assembly method is used by default if supported by the compiler and CPU,
otherwise ucontext or fiber method is used as a fallback.
The assembly method is very efficient, it just take a few cycles
to create, resume, yield or destroy a coroutine.
# Caveats
- Avoid using coroutines with C++ exceptions, this is not recommended, it may not behave as you
expect.
- When using C++ RAII (i.e. destructors) you must resume the coroutine until it dies to properly
execute all destructors.
- Some unsupported sanitizers for C may trigger false warnings when using coroutines.
- The `mco_coro` object is not thread safe, you should use a mutex for manipulating it in
multithread applications.
- To use in multithread applications, you must compile with C compiler that supports `thread_local`
qualifier.
- Avoid using `thread_local` inside coroutine code, the compiler may cache thread local variables
pointers which can be invalid when a coroutine switch threads.
- Stack space is limited. By default it has 56KB of space, this can be changed on coroutine
creation, or by enabling the virtual memory backed allocator to make it 2040KB.
- Take care to not cause stack overflows (run out of stack space), otherwise your program may crash
or not, the behavior is undefined.
- On WebAssembly you must compile with Emscripten flag `-s ASYNCIFY=1`.
- The WebAssembly Binaryen asyncify method can be used when explicitly enabled,
you may want to do this only to use minicoro with WebAssembly native interpreters
(no Web browser). This method is confirmed to work well with Emscripten toolchain,
however it fails on other WebAssembly toolchains like WASI SDK.
# Introduction
A coroutine represents an independent "green" thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling a yield function.
You create a coroutine by calling `mco_create`.
Its sole argument is a `mco_desc` structure with a description for the coroutine.
The `mco_create` function only creates a new coroutine and returns a handle to it, it does not start
the coroutine.
You execute a coroutine by calling `mco_resume`.
When calling a resume function the coroutine starts its execution by calling its body function.
After the coroutine starts running, it runs until it terminates or yields.
A coroutine yields by calling `mco_yield`.
When a coroutine yields, the corresponding resume returns immediately,
even if the yield happens inside nested function calls (that is, not in the main function).
The next time you resume the same coroutine, it continues its execution from the point where it
yielded.
To associate a persistent value with the coroutine,
you can optionally set `user_data` on its creation and later retrieve with `mco_get_user_data`.
To pass values between resume and yield,
you can optionally use `mco_push` and `mco_pop` APIs,
they are intended to pass temporary values using a LIFO style buffer.
The storage system can also be used to send and receive initial values on coroutine creation or
before it finishes.
# Usage
To use minicoro, do the following in one .c file:
```c
#define MINICORO_IMPL
#include "minicoro.h"
```
You can do `#include "minicoro.h"` in other parts of the program just like any other header.
## Minimal Example
The following simple example demonstrates on how to use the library:
```c
#define MINICORO_IMPL
#include <assert.h>
#include <stdio.h>
#include "minicoro.h"
// Coroutine entry function.
void coro_entry(mco_coro* co) {
printf("coroutine 1\n");
mco_yield(co);
printf("coroutine 2\n");
}
int main() {
// First initialize a `desc` object through `mco_desc_init`.
mco_desc desc = mco_desc_init(coro_entry, 0);
// Configure `desc` fields when needed (e.g. customize user_data or allocation functions).
desc.user_data = NULL;
// Call `mco_create` with the output coroutine pointer and `desc` pointer.
mco_coro* co;
mco_result res = mco_create(&co, &desc);
assert(res == MCO_SUCCESS);
// The coroutine should be now in suspended state.
assert(mco_status(co) == MCO_SUSPENDED);
// Call `mco_resume` to start for the first time, switching to its context.
res = mco_resume(co); // Should print "coroutine 1".
assert(res == MCO_SUCCESS);
// We get back from coroutine context in suspended state (because it's unfinished).
assert(mco_status(co) == MCO_SUSPENDED);
// Call `mco_resume` to resume for a second time.
res = mco_resume(co); // Should print "coroutine 2".
assert(res == MCO_SUCCESS);
// The coroutine finished and should be now dead.
assert(mco_status(co) == MCO_DEAD);
// Call `mco_destroy` to destroy the coroutine.
res = mco_destroy(co);
assert(res == MCO_SUCCESS);
return 0;
}
```
_NOTE_: In case you don't want to use the minicoro allocator system you should
allocate a coroutine object yourself using `mco_desc.coro_size` and call `mco_init`,
then later to destroy call `mco_uninit` and deallocate it.
## Yielding from anywhere
You can yield the current running coroutine from anywhere
without having to pass `mco_coro` pointers around,
to this just use `mco_yield(mco_running())`.
## Passing data between yield and resume
The library has the storage interface to assist passing data between yield and resume.
It's usage is straightforward,
use `mco_push` to send data before a `mco_resume` or `mco_yield`,
then later use `mco_pop` after a `mco_resume` or `mco_yield` to receive data.
Take care to not mismatch a push and pop, otherwise these functions will return
an error.
## Error handling
The library return error codes in most of its API in case of misuse or system error,
the user is encouraged to handle them properly.
## Virtual memory backed allocator
The new compile time option `MCO_USE_VMEM_ALLOCATOR` enables a virtual memory backed allocator.
Every stackful coroutine usually have to reserve memory for its full stack,
this typically makes the total memory usage very high when allocating thousands of coroutines,
for example, an application with 100 thousands coroutine with stacks of 56KB would consume as high
as 5GB of memory, however your application may not really full stack usage for every coroutine.
Some developers often prefer stackless coroutines over stackful coroutines
because of this problem, stackless memory footprint is low, therefore often considered more
lightweight. However stackless have many other limitations, like you cannot run unconstrained code
inside them.
One remedy to the solution is to make stackful coroutines growable,
to only use physical memory on demand when its really needed,
and there is a nice way to do this relying on virtual memory allocation
when supported by the operating system.
The virtual memory backed allocator will reserve virtual memory in the OS for each coroutine stack,
but not trigger real physical memory usage yet.
While the application virtual memory usage will be high,
the physical memory usage will be low and actually grow on demand (usually every 4KB chunk in
Linux).
The virtual memory backed allocator also raises the default stack size to about 2MB,
typically the size of extra threads in Linux,
so you have more space in your coroutines and the risk of stack overflow is low.
As an example, allocating 100 thousands coroutines with nearly 2MB stack reserved space
with the virtual memory allocator uses 783MB of physical memory usage, that is about 8KB per
coroutine, however the virtual memory usage will be at 98GB.
It is recommended to enable this option only if you plan to spawn thousands of coroutines
while wanting to have a low memory footprint.
Not all environments have an OS with virtual memory support, therefore this option is disabled by
default.
This option may add an order of magnitude overhead to `mco_create()`/`mco_destroy()`,
because they will request the OS to manage virtual memory page tables,
if this is a problem for you, please customize a custom allocator for your own needs.
## Library customization
The following can be defined to change the library behavior:
- `MCO_API` - Public API qualifier. Default is `extern`.
- `MCO_MIN_STACK_SIZE` - Minimum stack size when creating a coroutine. Default is 32768
(32KB).
- `MCO_DEFAULT_STORAGE_SIZE` - Size of coroutine storage buffer. Default is 1024.
- `MCO_DEFAULT_STACK_SIZE` - Default stack size when creating a coroutine. Default is 57344
(56KB). When `MCO_USE_VMEM_ALLOCATOR` is true the default is 2040KB (nearly 2MB).
- `MCO_ALLOC` - Default allocation function. Default is `calloc`.
- `MCO_DEALLOC` - Default deallocation function. Default is `free`.
- `MCO_USE_VMEM_ALLOCATOR` - Use virtual memory backed allocator, improving memory footprint per
coroutine.
- `MCO_NO_DEFAULT_ALLOCATOR` - Disable the default allocator using `MCO_ALLOC` and `MCO_DEALLOC`.
- `MCO_ZERO_MEMORY` - Zero memory of stack when poping storage, intended for garbage
collected environments.
- `MCO_DEBUG` - Enable debug mode, logging any runtime error to stdout. Defined
automatically unless `NDEBUG` or `MCO_NO_DEBUG` is defined.
- `MCO_NO_DEBUG` - Disable debug mode.
- `MCO_NO_MULTITHREAD` - Disable multithread usage. Multithread is supported when
`thread_local` is supported.
- `MCO_USE_ASM` - Force use of assembly context switch implementation.
- `MCO_USE_UCONTEXT` - Force use of ucontext context switch implementation.
- `MCO_USE_FIBERS` - Force use of fibers context switch implementation.
- `MCO_USE_ASYNCIFY` - Force use of Binaryen asyncify context switch implementation.
- `MCO_USE_VALGRIND` - Define if you want run with valgrind to fix accessing memory errors.
# License
Your choice of either Public Domain or MIT No Attribution, see end of file.
*/
#ifndef MINICORO_H
#define MINICORO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Public API qualifier. */
#ifndef MCO_API
#define MCO_API extern
#endif
/* Size of coroutine storage buffer. */
#ifndef MCO_DEFAULT_STORAGE_SIZE
#define MCO_DEFAULT_STORAGE_SIZE 1024
#endif
#include <stddef.h> /* for size_t */
/* ---------------------------------------------------------------------------------------------- */
/* Coroutine states. */
typedef enum mco_state {
MCO_DEAD = 0, /* The coroutine has finished normally or was uninitialized before finishing. */
MCO_NORMAL, /* The coroutine is active but not running (that is, it has resumed another
coroutine). */
MCO_RUNNING, /* The coroutine is active and running. */
MCO_SUSPENDED /* The coroutine is suspended (in a call to yield, or it has not started running
yet). */
} mco_state;
/* Coroutine result codes. */
typedef enum mco_result {
MCO_SUCCESS = 0,
MCO_GENERIC_ERROR,
MCO_INVALID_POINTER,
MCO_INVALID_COROUTINE,
MCO_NOT_SUSPENDED,
MCO_NOT_RUNNING,
MCO_MAKE_CONTEXT_ERROR,
MCO_SWITCH_CONTEXT_ERROR,
MCO_NOT_ENOUGH_SPACE,
MCO_OUT_OF_MEMORY,
MCO_INVALID_ARGUMENTS,
MCO_INVALID_OPERATION,
MCO_STACK_OVERFLOW
} mco_result;
/* Coroutine structure. */
typedef struct mco_coro mco_coro;
struct mco_coro {
void* context;
mco_state state;
void (*func)(mco_coro* co);
mco_coro* prev_co;
void* user_data;
size_t coro_size;
void* allocator_data;
void (*dealloc_cb)(void* ptr, size_t size, void* allocator_data);
void* stack_base; /* Stack base address, can be used to scan memory in a garbage collector. */
size_t stack_size;
unsigned char* storage;
size_t bytes_stored;
size_t storage_size;
void* asan_prev_stack; /* Used by address sanitizer. */
void* tsan_prev_fiber; /* Used by thread sanitizer. */
void* tsan_fiber; /* Used by thread sanitizer. */
size_t magic_number; /* Used to check stack overflow. */
};
/* Structure used to initialize a coroutine. */
typedef struct mco_desc {
void (*func)(mco_coro* co); /* Entry point function for the coroutine. */
void* user_data; /* Coroutine user data, can be get with `mco_get_user_data`. */
/* Custom allocation interface. */
void* (*alloc_cb)(size_t size, void* allocator_data); /* Custom allocation function. */
void (*dealloc_cb)(void* ptr, size_t size,
void* allocator_data); /* Custom deallocation function. */
void* allocator_data; /* User data pointer passed to `alloc`/`dealloc` allocation functions. */
size_t storage_size; /* Coroutine storage size, to be used with the storage APIs. */
/* These must be initialized only through `mco_init_desc`. */
size_t coro_size; /* Coroutine structure size. */
size_t stack_size; /* Coroutine stack size. */
} mco_desc;
/* Coroutine functions. */
MCO_API mco_desc
mco_desc_init(void (*func)(mco_coro* co),
size_t stack_size); /* Initialize description of a coroutine. When stack size is 0
then MCO_DEFAULT_STACK_SIZE is used. */
MCO_API mco_result mco_init(mco_coro* co, mco_desc* desc); /* Initialize the coroutine. */
MCO_API mco_result
mco_uninit(mco_coro* co); /* Uninitialize the coroutine, may fail if it's not dead or suspended. */
MCO_API mco_result mco_create(mco_coro** out_co,
mco_desc* desc); /* Allocates and initializes a new coroutine. */
MCO_API mco_result mco_destroy(mco_coro* co); /* Uninitialize and deallocate the coroutine, may fail
if it's not dead or suspended. */
MCO_API mco_result
mco_resume(mco_coro* co); /* Starts or continues the execution of the coroutine. */
MCO_API mco_result mco_yield(mco_coro* co); /* Suspends the execution of a coroutine. */
MCO_API mco_state mco_status(mco_coro* co); /* Returns the status of the coroutine. */
MCO_API void* mco_get_user_data(
mco_coro* co); /* Get coroutine user data supplied on coroutine creation. */
/* Storage interface functions, used to pass values between yield and resume. */
MCO_API mco_result mco_push(mco_coro* co, const void* src,
size_t len); /* Push bytes to the coroutine storage. Use to send values
between yield and resume. */
MCO_API mco_result mco_pop(mco_coro* co, void* dest,
size_t len); /* Pop bytes from the coroutine storage. Use to get values
between yield and resume. */
MCO_API mco_result mco_peek(mco_coro* co, void* dest,
size_t len); /* Like `mco_pop` but it does not consumes the storage. */
MCO_API size_t mco_get_bytes_stored(
mco_coro* co); /* Get the available bytes that can be retrieved with a `mco_pop`. */
MCO_API size_t mco_get_storage_size(mco_coro* co); /* Get the total storage size. */
/* Misc functions. */
MCO_API mco_coro* mco_running(void); /* Returns the running coroutine for the current thread. */
MCO_API const char* mco_result_description(mco_result res); /* Get the description of a result. */
#ifdef __cplusplus
}
#endif
#endif /* MINICORO_H */
#ifdef MINICORO_IMPL
#ifdef __cplusplus
extern "C" {
#endif
/* ---------------------------------------------------------------------------------------------- */
/* Minimum stack size when creating a coroutine. */
#ifndef MCO_MIN_STACK_SIZE
#define MCO_MIN_STACK_SIZE 32768
#endif
/* Default stack size when creating a coroutine. */
#ifndef MCO_DEFAULT_STACK_SIZE
/* Use multiples of 64KB minus 8KB, because 8KB is reserved for coroutine internal structures. */
#ifdef MCO_USE_VMEM_ALLOCATOR
#define MCO_DEFAULT_STACK_SIZE \
2040 * 1024 /* 2040KB, nearly the same stack size of a thread in x86_64 Linux. */
#else
#define MCO_DEFAULT_STACK_SIZE 56 * 1024 /* 56KB */
#endif
#endif
/* Number used only to assist checking for stack overflows. */
#define MCO_MAGIC_NUMBER 0x7E3CB1A9
/* Detect implementation based on OS, arch and compiler. */
#if !defined(MCO_USE_UCONTEXT) && !defined(MCO_USE_FIBERS) && !defined(MCO_USE_ASM) && \
!defined(MCO_USE_ASYNCIFY)
#if defined(_WIN32)
#if (defined(__GNUC__) && defined(__x86_64__)) || (defined(_MSC_VER) && defined(_M_X64))
#define MCO_USE_ASM
#else
#define MCO_USE_FIBERS
#endif
#elif defined(__CYGWIN__) /* MSYS */
#define MCO_USE_UCONTEXT
#elif defined(__EMSCRIPTEN__)
#define MCO_USE_FIBERS
#elif defined(__wasm__)
#define MCO_USE_ASYNCIFY
#else
#if __GNUC__ >= 3 /* Assembly extension supported. */
#if defined(__x86_64__) || defined(__i386) || defined(__i386__) || defined(__ARM_EABI__) || \
defined(__aarch64__) || defined(__riscv)
#define MCO_USE_ASM
#else
#define MCO_USE_UCONTEXT
#endif
#else
#define MCO_USE_UCONTEXT
#endif
#endif
#endif
#define _MCO_UNUSED(x) (void)(x)
#if !defined(MCO_NO_DEBUG) && !defined(NDEBUG) && !defined(MCO_DEBUG)
#define MCO_DEBUG
#endif
#ifndef MCO_LOG
#ifdef MCO_DEBUG
#include <stdio.h>
#define MCO_LOG(s) puts(s)
#else
#define MCO_LOG(s)
#endif
#endif
#ifndef MCO_ASSERT
#ifdef MCO_DEBUG
#include <assert.h>
#define MCO_ASSERT(c) assert(c)
#else
#define MCO_ASSERT(c)
#endif
#endif
#ifndef MCO_THREAD_LOCAL
#ifdef MCO_NO_MULTITHREAD
#define MCO_THREAD_LOCAL
#else
#ifdef thread_local
#define MCO_THREAD_LOCAL thread_local
#elif __STDC_VERSION__ >= 201112 && !defined(__STDC_NO_THREADS__)
#define MCO_THREAD_LOCAL _Thread_local
#elif defined(_WIN32) && \
(defined(_MSC_VER) || defined(__ICL) || defined(__DMC__) || defined(__BORLANDC__))
#define MCO_THREAD_LOCAL __declspec(thread)
#elif defined(__GNUC__) || defined(__SUNPRO_C) || defined(__xlC__)
#define MCO_THREAD_LOCAL __thread
#else /* No thread local support, `mco_running` will be thread unsafe. */
#define MCO_THREAD_LOCAL
#define MCO_NO_MULTITHREAD
#endif
#endif
#endif
#ifndef MCO_FORCE_INLINE
#ifdef _MSC_VER
#define MCO_FORCE_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define MCO_FORCE_INLINE __inline__ __attribute__((always_inline))
#else
#define MCO_FORCE_INLINE inline __attribute__((always_inline))
#endif
#elif defined(__BORLANDC__) || defined(__DMC__) || defined(__SC__) || defined(__WATCOMC__) || \
defined(__LCC__) || defined(__DECC)
#define MCO_FORCE_INLINE __inline
#else /* No inline support. */
#define MCO_FORCE_INLINE
#endif
#endif
#ifndef MCO_NO_INLINE
#ifdef __GNUC__
#define MCO_NO_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define MCO_NO_INLINE __declspec(noinline)
#else
#define MCO_NO_INLINE
#endif
#endif
#if defined(_WIN32) && (defined(MCO_USE_FIBERS) || defined(MCO_USE_VMEM_ALLOCATOR))
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#endif
#ifndef MCO_NO_DEFAULT_ALLOCATOR
#if defined(MCO_USE_VMEM_ALLOCATOR) && defined(_WIN32)
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
_MCO_UNUSED(size);
int res = VirtualFree(ptr, 0, MEM_RELEASE);
_MCO_UNUSED(res);
MCO_ASSERT(res != 0);
}
#elif defined(MCO_USE_VMEM_ALLOCATOR) /* POSIX virtual memory allocator */
#include <sys/mman.h>
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
return ptr != MAP_FAILED ? ptr : NULL;
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
int res = munmap(ptr, size);
_MCO_UNUSED(res);
MCO_ASSERT(res == 0);
}
#else /* C allocator */
#ifndef MCO_ALLOC
#include <stdlib.h>
/* We use calloc() so we give a chance for the OS to reserve virtual memory without really using
physical memory, calloc() also has the nice property of initializing the stack to zeros. */
#define MCO_ALLOC(size) calloc(1, size)
#define MCO_DEALLOC(ptr, size) free(ptr)
#endif
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
return MCO_ALLOC(size);
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(size);
_MCO_UNUSED(allocator_data);
MCO_DEALLOC(ptr, size);
}
#endif /* MCO_USE_VMEM_ALLOCATOR */
#endif /* MCO_NO_DEFAULT_ALLOCATOR */
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define _MCO_USE_ASAN
#endif
#if __has_feature(thread_sanitizer)
#define _MCO_USE_TSAN
#endif
#endif
#if defined(__SANITIZE_ADDRESS__)
#define _MCO_USE_ASAN
#endif
#if defined(__SANITIZE_THREAD__)
#define _MCO_USE_TSAN
#endif
#ifdef _MCO_USE_ASAN
void __sanitizer_start_switch_fiber(void** fake_stack_save, const void* bottom, size_t size);
void __sanitizer_finish_switch_fiber(void* fake_stack_save, const void** bottom_old,
size_t* size_old);
#endif
#ifdef _MCO_USE_TSAN
void* __tsan_get_current_fiber(void);
void* __tsan_create_fiber(unsigned flags);
void __tsan_destroy_fiber(void* fiber);
void __tsan_switch_to_fiber(void* fiber, unsigned flags);
#endif
#include <string.h> /* For memcpy and memset. */
/* Utility for aligning addresses. */
static MCO_FORCE_INLINE size_t _mco_align_forward(size_t addr, size_t align) {
return (addr + (align - 1)) & ~(align - 1);
}
/* Variable holding the current running coroutine per thread. */
static MCO_THREAD_LOCAL mco_coro* mco_current_co = NULL;
static MCO_FORCE_INLINE void _mco_prepare_jumpin(mco_coro* co) {
/* Set the old coroutine to normal state and update it. */
mco_coro* prev_co = mco_running(); /* Must access through `mco_running`. */
MCO_ASSERT(co->prev_co == NULL);
co->prev_co = prev_co;
if (prev_co) {
MCO_ASSERT(prev_co->state == MCO_RUNNING);
prev_co->state = MCO_NORMAL;
}
mco_current_co = co;
#ifdef _MCO_USE_ASAN
if (prev_co) {
void* bottom_old = NULL;
size_t size_old = 0;
__sanitizer_finish_switch_fiber(prev_co->asan_prev_stack, (const void**)&bottom_old,
&size_old);
prev_co->asan_prev_stack = NULL;
}
__sanitizer_start_switch_fiber(&co->asan_prev_stack, co->stack_base, co->stack_size);
#endif
#ifdef _MCO_USE_TSAN
co->tsan_prev_fiber = __tsan_get_current_fiber();
__tsan_switch_to_fiber(co->tsan_fiber, 0);
#endif
}
static MCO_FORCE_INLINE void _mco_prepare_jumpout(mco_coro* co) {
/* Switch back to the previous running coroutine. */
/* MCO_ASSERT(mco_running() == co); */
mco_coro* prev_co = co->prev_co;
co->prev_co = NULL;
if (prev_co) {
/* MCO_ASSERT(prev_co->state == MCO_NORMAL); */
prev_co->state = MCO_RUNNING;
}
mco_current_co = prev_co;
#ifdef _MCO_USE_ASAN
void* bottom_old = NULL;
size_t size_old = 0;
__sanitizer_finish_switch_fiber(co->asan_prev_stack, (const void**)&bottom_old, &size_old);
co->asan_prev_stack = NULL;
if (prev_co) {
__sanitizer_start_switch_fiber(&prev_co->asan_prev_stack, bottom_old, size_old);
}
#endif
#ifdef _MCO_USE_TSAN
void* tsan_prev_fiber = co->tsan_prev_fiber;
co->tsan_prev_fiber = NULL;
__tsan_switch_to_fiber(tsan_prev_fiber, 0);
#endif
}
static void _mco_jumpin(mco_coro* co);
static void _mco_jumpout(mco_coro* co);
static MCO_NO_INLINE void _mco_main(mco_coro* co) {
co->func(co); /* Run the coroutine function. */
co->state = MCO_DEAD; /* Coroutine finished successfully, set state to dead. */
_mco_jumpout(co); /* Jump back to the old context .*/
}
/* ---------------------------------------------------------------------------------------------- */
#if defined(MCO_USE_UCONTEXT) || defined(MCO_USE_ASM)
/*
Some of the following assembly code is taken from LuaCoco by Mike Pall.
See https://coco.luajit.org/index.html
MIT license
Copyright (C) 2004-2016 Mike Pall. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef MCO_USE_ASM
#if defined(__x86_64__) || defined(_M_X64)
#ifdef _WIN32
typedef struct _mco_ctxbuf {
void *rip, *rsp, *rbp, *rbx, *r12, *r13, *r14, *r15, *rdi, *rsi;
void* xmm[20]; /* xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 */
void* fiber_storage;
void* dealloc_stack;
void* stack_limit;
void* stack_base;
} _mco_ctxbuf;
#if defined(__GNUC__)
#define _MCO_ASM_BLOB __attribute__((section(".text")))
#elif defined(_MSC_VER)
#define _MCO_ASM_BLOB __declspec(allocate(".text"))
#pragma section(".text")
#endif
_MCO_ASM_BLOB static unsigned char _mco_wrap_main_code[] = {
0x4c, 0x89, 0xe9, /* mov %r13,%rcx */
0x41, 0xff, 0xe4, /* jmpq *%r12 */
0xc3, /* retq */
0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90 /* nop */
};
_MCO_ASM_BLOB static unsigned char _mco_switch_code[] = {
0x48, 0x8d, 0x05, 0x3e, 0x01, 0x00, 0x00, /* lea 0x13e(%rip),%rax */
0x48, 0x89, 0x01, /* mov %rax,(%rcx) */
0x48, 0x89, 0x61, 0x08, /* mov %rsp,0x8(%rcx) */
0x48, 0x89, 0x69, 0x10, /* mov %rbp,0x10(%rcx) */
0x48, 0x89, 0x59, 0x18, /* mov %rbx,0x18(%rcx) */
0x4c, 0x89, 0x61, 0x20, /* mov %r12,0x20(%rcx) */
0x4c, 0x89, 0x69, 0x28, /* mov %r13,0x28(%rcx) */
0x4c, 0x89, 0x71, 0x30, /* mov %r14,0x30(%rcx) */
0x4c, 0x89, 0x79, 0x38, /* mov %r15,0x38(%rcx) */
0x48, 0x89, 0x79, 0x40, /* mov %rdi,0x40(%rcx) */
0x48, 0x89, 0x71, 0x48, /* mov %rsi,0x48(%rcx) */
0x0f, 0x11, 0x71, 0x50, /* movups %xmm6,0x50(%rcx) */
0x0f, 0x11, 0x79, 0x60, /* movups %xmm7,0x60(%rcx) */
0x44, 0x0f, 0x11, 0x41, 0x70, /* movups %xmm8,0x70(%rcx) */
0x44, 0x0f, 0x11, 0x89, 0x80, 0x00, 0x00, 0x00, /* movups %xmm9,0x80(%rcx) */
0x44, 0x0f, 0x11, 0x91, 0x90, 0x00, 0x00, 0x00, /* movups %xmm10,0x90(%rcx) */
0x44, 0x0f, 0x11, 0x99, 0xa0, 0x00, 0x00, 0x00, /* movups %xmm11,0xa0(%rcx) */
0x44, 0x0f, 0x11, 0xa1, 0xb0, 0x00, 0x00, 0x00, /* movups %xmm12,0xb0(%rcx) */
0x44, 0x0f, 0x11, 0xa9, 0xc0, 0x00, 0x00, 0x00, /* movups %xmm13,0xc0(%rcx) */
0x44, 0x0f, 0x11, 0xb1, 0xd0, 0x00, 0x00, 0x00, /* movups %xmm14,0xd0(%rcx) */
0x44, 0x0f, 0x11, 0xb9, 0xe0, 0x00, 0x00, 0x00, /* movups %xmm15,0xe0(%rcx) */
0x65, 0x4c, 0x8b, 0x14, 0x25, 0x30, 0x00, 0x00, 0x00, /* mov %gs:0x30,%r10 */
0x49, 0x8b, 0x42, 0x20, /* mov 0x20(%r10),%rax */
0x48, 0x89, 0x81, 0xf0, 0x00, 0x00, 0x00, /* mov %rax,0xf0(%rcx) */
0x49, 0x8b, 0x82, 0x78, 0x14, 0x00, 0x00, /* mov 0x1478(%r10),%rax */
0x48, 0x89, 0x81, 0xf8, 0x00, 0x00, 0x00, /* mov %rax,0xf8(%rcx) */
0x49, 0x8b, 0x42, 0x10, /* mov 0x10(%r10),%rax */
0x48, 0x89, 0x81, 0x00, 0x01, 0x00, 0x00, /* mov %rax,0x100(%rcx) */
0x49, 0x8b, 0x42, 0x08, /* mov 0x8(%r10),%rax */
0x48, 0x89, 0x81, 0x08, 0x01, 0x00, 0x00, /* mov %rax,0x108(%rcx) */
0x48, 0x8b, 0x82, 0x08, 0x01, 0x00, 0x00, /* mov 0x108(%rdx),%rax */
0x49, 0x89, 0x42, 0x08, /* mov %rax,0x8(%r10) */
0x48, 0x8b, 0x82, 0x00, 0x01, 0x00, 0x00, /* mov 0x100(%rdx),%rax */
0x49, 0x89, 0x42, 0x10, /* mov %rax,0x10(%r10) */
0x48, 0x8b, 0x82, 0xf8, 0x00, 0x00, 0x00, /* mov 0xf8(%rdx),%rax */
0x49, 0x89, 0x82, 0x78, 0x14, 0x00, 0x00, /* mov %rax,0x1478(%r10) */
0x48, 0x8b, 0x82, 0xf0, 0x00, 0x00, 0x00, /* mov 0xf0(%rdx),%rax */
0x49, 0x89, 0x42, 0x20, /* mov %rax,0x20(%r10) */
0x44, 0x0f, 0x10, 0xba, 0xe0, 0x00, 0x00, 0x00, /* movups 0xe0(%rdx),%xmm15 */
0x44, 0x0f, 0x10, 0xb2, 0xd0, 0x00, 0x00, 0x00, /* movups 0xd0(%rdx),%xmm14 */
0x44, 0x0f, 0x10, 0xaa, 0xc0, 0x00, 0x00, 0x00, /* movups 0xc0(%rdx),%xmm13 */
0x44, 0x0f, 0x10, 0xa2, 0xb0, 0x00, 0x00, 0x00, /* movups 0xb0(%rdx),%xmm12 */
0x44, 0x0f, 0x10, 0x9a, 0xa0, 0x00, 0x00, 0x00, /* movups 0xa0(%rdx),%xmm11 */
0x44, 0x0f, 0x10, 0x92, 0x90, 0x00, 0x00, 0x00, /* movups 0x90(%rdx),%xmm10 */
0x44, 0x0f, 0x10, 0x8a, 0x80, 0x00, 0x00, 0x00, /* movups 0x80(%rdx),%xmm9 */
0x44, 0x0f, 0x10, 0x42, 0x70, /* movups 0x70(%rdx),%xmm8 */
0x0f, 0x10, 0x7a, 0x60, /* movups 0x60(%rdx),%xmm7 */
0x0f, 0x10, 0x72, 0x50, /* movups 0x50(%rdx),%xmm6 */
0x48, 0x8b, 0x72, 0x48, /* mov 0x48(%rdx),%rsi */
0x48, 0x8b, 0x7a, 0x40, /* mov 0x40(%rdx),%rdi */
0x4c, 0x8b, 0x7a, 0x38, /* mov 0x38(%rdx),%r15 */
0x4c, 0x8b, 0x72, 0x30, /* mov 0x30(%rdx),%r14 */
0x4c, 0x8b, 0x6a, 0x28, /* mov 0x28(%rdx),%r13 */
0x4c, 0x8b, 0x62, 0x20, /* mov 0x20(%rdx),%r12 */
0x48, 0x8b, 0x5a, 0x18, /* mov 0x18(%rdx),%rbx */
0x48, 0x8b, 0x6a, 0x10, /* mov 0x10(%rdx),%rbp */
0x48, 0x8b, 0x62, 0x08, /* mov 0x8(%rdx),%rsp */
0xff, 0x22, /* jmpq *(%rdx) */
0xc3, /* retq */
0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, /* nop */
0x90, 0x90, /* nop */
};
void (*_mco_wrap_main)(void) = (void (*)(void))(void*)_mco_wrap_main_code;
void (*_mco_switch)(_mco_ctxbuf* from,
_mco_ctxbuf* to) = (void (*)(_mco_ctxbuf* from,
_mco_ctxbuf* to))(void*)_mco_switch_code;
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
stack_size = stack_size - 32; /* Reserve 32 bytes for the shadow space. */
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
ctx->rip = (void*)(_mco_wrap_main);
ctx->rsp = (void*)(stack_high_ptr);
ctx->r12 = (void*)(_mco_main);
ctx->r13 = (void*)(co);
void* stack_top = (void*)((size_t)stack_base + stack_size);
ctx->stack_base = stack_top;
ctx->stack_limit = stack_base;
ctx->dealloc_stack = stack_base;
return MCO_SUCCESS;
}
#else /* not _WIN32 */
typedef struct _mco_ctxbuf {
void *rip, *rsp, *rbp, *rbx, *r12, *r13, *r14, *r15;
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(".text\n"
#ifdef __MACH__ /* Mac OS X assembler */
".globl __mco_wrap_main\n"
"__mco_wrap_main:\n"
#else /* Linux assembler */
".globl _mco_wrap_main\n"
".type _mco_wrap_main @function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
#endif
" movq %r13, %rdi\n"
" jmpq *%r12\n"
#ifndef __MACH__
".size _mco_wrap_main, .-_mco_wrap_main\n"
#endif
);
__asm__(".text\n"
#ifdef __MACH__ /* Mac OS assembler */
".globl __mco_switch\n"
"__mco_switch:\n"
#else /* Linux assembler */
".globl _mco_switch\n"
".type _mco_switch @function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#endif
" leaq 0x3d(%rip), %rax\n"
" movq %rax, (%rdi)\n"
" movq %rsp, 8(%rdi)\n"
" movq %rbp, 16(%rdi)\n"
" movq %rbx, 24(%rdi)\n"
" movq %r12, 32(%rdi)\n"
" movq %r13, 40(%rdi)\n"
" movq %r14, 48(%rdi)\n"
" movq %r15, 56(%rdi)\n"
" movq 56(%rsi), %r15\n"
" movq 48(%rsi), %r14\n"
" movq 40(%rsi), %r13\n"
" movq 32(%rsi), %r12\n"
" movq 24(%rsi), %rbx\n"
" movq 16(%rsi), %rbp\n"
" movq 8(%rsi), %rsp\n"
" jmpq *(%rsi)\n"
" ret\n"
#ifndef __MACH__
".size _mco_switch, .-_mco_switch\n"
#endif
);
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
stack_size =
stack_size - 128; /* Reserve 128 bytes for the Red Zone space (System V AMD64 ABI). */
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
ctx->rip = (void*)(_mco_wrap_main);
ctx->rsp = (void*)(stack_high_ptr);
ctx->r12 = (void*)(_mco_main);
ctx->r13 = (void*)(co);
return MCO_SUCCESS;
}
#endif /* not _WIN32 */
#elif defined(__riscv)
typedef struct _mco_ctxbuf {
void* s[12]; /* s0-s11 */
void* ra;
void* pc;
void* sp;
#ifdef __riscv_flen
#if __riscv_flen == 64
double fs[12]; /* fs0-fs11 */
#elif __riscv_flen == 32
float fs[12]; /* fs0-fs11 */
#endif
#endif /* __riscv_flen */
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(".text\n"
".globl _mco_wrap_main\n"
".type _mco_wrap_main @function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
" mv a0, s0\n"
" jr s1\n"
".size _mco_wrap_main, .-_mco_wrap_main\n");
__asm__(".text\n"
".globl _mco_switch\n"
".type _mco_switch @function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#if __riscv_xlen == 64
" sd s0, 0x00(a0)\n"
" sd s1, 0x08(a0)\n"
" sd s2, 0x10(a0)\n"
" sd s3, 0x18(a0)\n"
" sd s4, 0x20(a0)\n"
" sd s5, 0x28(a0)\n"
" sd s6, 0x30(a0)\n"
" sd s7, 0x38(a0)\n"
" sd s8, 0x40(a0)\n"
" sd s9, 0x48(a0)\n"
" sd s10, 0x50(a0)\n"
" sd s11, 0x58(a0)\n"
" sd ra, 0x60(a0)\n"
" sd ra, 0x68(a0)\n" /* pc */
" sd sp, 0x70(a0)\n"
#ifdef __riscv_flen
#if __riscv_flen == 64
" fsd fs0, 0x78(a0)\n"
" fsd fs1, 0x80(a0)\n"
" fsd fs2, 0x88(a0)\n"
" fsd fs3, 0x90(a0)\n"
" fsd fs4, 0x98(a0)\n"
" fsd fs5, 0xa0(a0)\n"
" fsd fs6, 0xa8(a0)\n"
" fsd fs7, 0xb0(a0)\n"
" fsd fs8, 0xb8(a0)\n"
" fsd fs9, 0xc0(a0)\n"
" fsd fs10, 0xc8(a0)\n"
" fsd fs11, 0xd0(a0)\n"
" fld fs0, 0x78(a1)\n"
" fld fs1, 0x80(a1)\n"
" fld fs2, 0x88(a1)\n"
" fld fs3, 0x90(a1)\n"
" fld fs4, 0x98(a1)\n"
" fld fs5, 0xa0(a1)\n"
" fld fs6, 0xa8(a1)\n"
" fld fs7, 0xb0(a1)\n"
" fld fs8, 0xb8(a1)\n"
" fld fs9, 0xc0(a1)\n"
" fld fs10, 0xc8(a1)\n"
" fld fs11, 0xd0(a1)\n"
#else
#error "Unsupported RISC-V FLEN"
#endif
#endif /* __riscv_flen */
" ld s0, 0x00(a1)\n"
" ld s1, 0x08(a1)\n"
" ld s2, 0x10(a1)\n"
" ld s3, 0x18(a1)\n"
" ld s4, 0x20(a1)\n"
" ld s5, 0x28(a1)\n"
" ld s6, 0x30(a1)\n"
" ld s7, 0x38(a1)\n"
" ld s8, 0x40(a1)\n"
" ld s9, 0x48(a1)\n"
" ld s10, 0x50(a1)\n"
" ld s11, 0x58(a1)\n"
" ld ra, 0x60(a1)\n"
" ld a2, 0x68(a1)\n" /* pc */
" ld sp, 0x70(a1)\n"
" jr a2\n"
#elif __riscv_xlen == 32
" sw s0, 0x00(a0)\n"
" sw s1, 0x04(a0)\n"
" sw s2, 0x08(a0)\n"
" sw s3, 0x0c(a0)\n"
" sw s4, 0x10(a0)\n"
" sw s5, 0x14(a0)\n"
" sw s6, 0x18(a0)\n"
" sw s7, 0x1c(a0)\n"
" sw s8, 0x20(a0)\n"
" sw s9, 0x24(a0)\n"
" sw s10, 0x28(a0)\n"
" sw s11, 0x2c(a0)\n"
" sw ra, 0x30(a0)\n"
" sw ra, 0x34(a0)\n" /* pc */
" sw sp, 0x38(a0)\n"
#ifdef __riscv_flen
#if __riscv_flen == 64
" fsd fs0, 0x3c(a0)\n"
" fsd fs1, 0x44(a0)\n"
" fsd fs2, 0x4c(a0)\n"
" fsd fs3, 0x54(a0)\n"
" fsd fs4, 0x5c(a0)\n"
" fsd fs5, 0x64(a0)\n"
" fsd fs6, 0x6c(a0)\n"
" fsd fs7, 0x74(a0)\n"
" fsd fs8, 0x7c(a0)\n"
" fsd fs9, 0x84(a0)\n"
" fsd fs10, 0x8c(a0)\n"
" fsd fs11, 0x94(a0)\n"
" fld fs0, 0x3c(a1)\n"
" fld fs1, 0x44(a1)\n"
" fld fs2, 0x4c(a1)\n"
" fld fs3, 0x54(a1)\n"
" fld fs4, 0x5c(a1)\n"
" fld fs5, 0x64(a1)\n"
" fld fs6, 0x6c(a1)\n"
" fld fs7, 0x74(a1)\n"
" fld fs8, 0x7c(a1)\n"
" fld fs9, 0x84(a1)\n"
" fld fs10, 0x8c(a1)\n"
" fld fs11, 0x94(a1)\n"
#elif __riscv_flen == 32
" fsw fs0, 0x3c(a0)\n"
" fsw fs1, 0x40(a0)\n"
" fsw fs2, 0x44(a0)\n"
" fsw fs3, 0x48(a0)\n"
" fsw fs4, 0x4c(a0)\n"
" fsw fs5, 0x50(a0)\n"
" fsw fs6, 0x54(a0)\n"
" fsw fs7, 0x58(a0)\n"
" fsw fs8, 0x5c(a0)\n"
" fsw fs9, 0x60(a0)\n"
" fsw fs10, 0x64(a0)\n"
" fsw fs11, 0x68(a0)\n"
" flw fs0, 0x3c(a1)\n"
" flw fs1, 0x40(a1)\n"
" flw fs2, 0x44(a1)\n"
" flw fs3, 0x48(a1)\n"
" flw fs4, 0x4c(a1)\n"
" flw fs5, 0x50(a1)\n"
" flw fs6, 0x54(a1)\n"
" flw fs7, 0x58(a1)\n"
" flw fs8, 0x5c(a1)\n"
" flw fs9, 0x60(a1)\n"
" flw fs10, 0x64(a1)\n"
" flw fs11, 0x68(a1)\n"
#else
#error "Unsupported RISC-V FLEN"
#endif
#endif /* __riscv_flen */
" lw s0, 0x00(a1)\n"
" lw s1, 0x04(a1)\n"
" lw s2, 0x08(a1)\n"
" lw s3, 0x0c(a1)\n"
" lw s4, 0x10(a1)\n"
" lw s5, 0x14(a1)\n"
" lw s6, 0x18(a1)\n"
" lw s7, 0x1c(a1)\n"
" lw s8, 0x20(a1)\n"
" lw s9, 0x24(a1)\n"
" lw s10, 0x28(a1)\n"
" lw s11, 0x2c(a1)\n"
" lw ra, 0x30(a1)\n"
" lw a2, 0x34(a1)\n" /* pc */
" lw sp, 0x38(a1)\n"
" jr a2\n"
#else
#error "Unsupported RISC-V XLEN"
#endif /* __riscv_xlen */
".size _mco_switch, .-_mco_switch\n");
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
ctx->s[0] = (void*)(co);
ctx->s[1] = (void*)(_mco_main);
ctx->pc = (void*)(_mco_wrap_main);
#if __riscv_xlen == 64
ctx->ra = (void*)(0xdeaddeaddeaddead);
#elif __riscv_xlen == 32
ctx->ra = (void*)(0xdeaddead);
#endif
ctx->sp = (void*)((size_t)stack_base + stack_size);
return MCO_SUCCESS;
}
#elif defined(__i386) || defined(__i386__)
typedef struct _mco_ctxbuf {
void *eip, *esp, *ebp, *ebx, *esi, *edi;
} _mco_ctxbuf;
void _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(
#ifdef __DJGPP__ /* DOS compiler */
"__mco_switch:\n"
#else
".text\n"
".globl _mco_switch\n"
".type _mco_switch @function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#endif
" call 1f\n"
" 1:\n"
" popl %ecx\n"
" addl $(2f-1b), %ecx\n"
" movl 4(%esp), %eax\n"
" movl 8(%esp), %edx\n"
" movl %ecx, (%eax)\n"
" movl %esp, 4(%eax)\n"
" movl %ebp, 8(%eax)\n"
" movl %ebx, 12(%eax)\n"
" movl %esi, 16(%eax)\n"
" movl %edi, 20(%eax)\n"
" movl 20(%edx), %edi\n"
" movl 16(%edx), %esi\n"
" movl 12(%edx), %ebx\n"
" movl 8(%edx), %ebp\n"
" movl 4(%edx), %esp\n"
" jmp *(%edx)\n"
" 2:\n"
" ret\n"
#ifndef __DJGPP__
".size _mco_switch, .-_mco_switch\n"
#endif
);
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - 16 - 1 * sizeof(size_t));
stack_high_ptr[0] = (void*)(0xdeaddead); /* Dummy return address. */
stack_high_ptr[1] = (void*)(co);
ctx->eip = (void*)(_mco_main);
ctx->esp = (void*)(stack_high_ptr);
return MCO_SUCCESS;
}
#elif defined(__ARM_EABI__)
typedef struct _mco_ctxbuf {
#ifndef __SOFTFP__
void* f[16];
#endif
void* d[4]; /* d8-d15 */
void* r[4]; /* r4-r11 */
void* lr;
void* sp;
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(".text\n"
#ifdef __APPLE__
".globl __mco_switch\n"
"__mco_switch:\n"
#else
".globl _mco_switch\n"
".type _mco_switch #function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#endif
#ifndef __SOFTFP__
" vstmia r0!, {d8-d15}\n"
#endif
" stmia r0, {r4-r11, lr}\n"
" str sp, [r0, #9*4]\n"
#ifndef __SOFTFP__
" vldmia r1!, {d8-d15}\n"
#endif
" ldr sp, [r1, #9*4]\n"
" ldmia r1, {r4-r11, pc}\n"
#ifndef __APPLE__
".size _mco_switch, .-_mco_switch\n"
#endif
);
__asm__(".text\n"
#ifdef __APPLE__
".globl __mco_wrap_main\n"
"__mco_wrap_main:\n"
#else
".globl _mco_wrap_main\n"
".type _mco_wrap_main #function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
#endif
" mov r0, r4\n"
" mov ip, r5\n"
" mov lr, r6\n"
" bx ip\n"
#ifndef __APPLE__
".size _mco_wrap_main, .-_mco_wrap_main\n"
#endif
);
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
ctx->d[0] = (void*)(co);
ctx->d[1] = (void*)(_mco_main);
ctx->d[2] = (void*)(0xdeaddead); /* Dummy return address. */
ctx->lr = (void*)(_mco_wrap_main);
ctx->sp = (void*)((size_t)stack_base + stack_size);
return MCO_SUCCESS;
}
#elif defined(__aarch64__)
typedef struct _mco_ctxbuf {
void* x[12]; /* x19-x30 */
void* sp;
void* lr;
void* d[8]; /* d8-d15 */
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(".text\n"
#ifdef __APPLE__
".globl __mco_switch\n"
"__mco_switch:\n"
#else
".globl _mco_switch\n"
".type _mco_switch #function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#endif
" mov x10, sp\n"
" mov x11, x30\n"
" stp x19, x20, [x0, #(0*16)]\n"
" stp x21, x22, [x0, #(1*16)]\n"
" stp d8, d9, [x0, #(7*16)]\n"
" stp x23, x24, [x0, #(2*16)]\n"
" stp d10, d11, [x0, #(8*16)]\n"
" stp x25, x26, [x0, #(3*16)]\n"
" stp d12, d13, [x0, #(9*16)]\n"
" stp x27, x28, [x0, #(4*16)]\n"
" stp d14, d15, [x0, #(10*16)]\n"
" stp x29, x30, [x0, #(5*16)]\n"
" stp x10, x11, [x0, #(6*16)]\n"
" ldp x19, x20, [x1, #(0*16)]\n"
" ldp x21, x22, [x1, #(1*16)]\n"
" ldp d8, d9, [x1, #(7*16)]\n"
" ldp x23, x24, [x1, #(2*16)]\n"
" ldp d10, d11, [x1, #(8*16)]\n"
" ldp x25, x26, [x1, #(3*16)]\n"
" ldp d12, d13, [x1, #(9*16)]\n"
" ldp x27, x28, [x1, #(4*16)]\n"
" ldp d14, d15, [x1, #(10*16)]\n"
" ldp x29, x30, [x1, #(5*16)]\n"
" ldp x10, x11, [x1, #(6*16)]\n"
" mov sp, x10\n"
" br x11\n"
#ifndef __APPLE__
".size _mco_switch, .-_mco_switch\n"
#endif
);
__asm__(".text\n"
#ifdef __APPLE__
".globl __mco_wrap_main\n"
"__mco_wrap_main:\n"
#else
".globl _mco_wrap_main\n"
".type _mco_wrap_main #function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
#endif
" mov x0, x19\n"
" mov x30, x21\n"
" br x20\n"
#ifndef __APPLE__
".size _mco_wrap_main, .-_mco_wrap_main\n"
#endif
);
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
ctx->x[0] = (void*)(co);
ctx->x[1] = (void*)(_mco_main);
ctx->x[2] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
ctx->sp = (void*)((size_t)stack_base + stack_size);
ctx->lr = (void*)(_mco_wrap_main);
return MCO_SUCCESS;
}
#else
#error "Unsupported architecture for assembly method."
#endif /* ARCH */
#elif defined(MCO_USE_UCONTEXT)
#include <ucontext.h>
typedef ucontext_t _mco_ctxbuf;
#if defined(_LP64) || defined(__LP64__)
static void _mco_wrap_main(unsigned int lo, unsigned int hi) {
mco_coro* co =
(mco_coro*)(((size_t)lo) | (((size_t)hi) << 32)); /* Extract coroutine pointer. */
_mco_main(co);
}
#else
static void _mco_wrap_main(unsigned int lo) {
mco_coro* co = (mco_coro*)((size_t)lo); /* Extract coroutine pointer. */
_mco_main(co);
}
#endif
static MCO_FORCE_INLINE void _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to) {
int res = swapcontext(from, to);
_MCO_UNUSED(res);
MCO_ASSERT(res == 0);
}
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base,
size_t stack_size) {
/* Initialize ucontext. */
if (getcontext(ctx) != 0) {
MCO_LOG("failed to get ucontext");
return MCO_MAKE_CONTEXT_ERROR;
}
ctx->uc_link = NULL; /* We never exit from _mco_wrap_main. */
ctx->uc_stack.ss_sp = stack_base;
ctx->uc_stack.ss_size = stack_size;
unsigned int lo = (unsigned int)((size_t)co);
#if defined(_LP64) || defined(__LP64__)
unsigned int hi = (unsigned int)(((size_t)co) >> 32);
makecontext(ctx, (void (*)(void))_mco_wrap_main, 2, lo, hi);
#else
makecontext(ctx, (void (*)(void))_mco_wrap_main, 1, lo);
#endif
return MCO_SUCCESS;
}
#endif /* defined(MCO_USE_UCONTEXT) */
#ifdef MCO_USE_VALGRIND
#include <valgrind/valgrind.h>
#endif
typedef struct _mco_context {
#ifdef MCO_USE_VALGRIND
unsigned int valgrind_stack_id;
#endif
_mco_ctxbuf ctx;
_mco_ctxbuf back_ctx;
} _mco_context;
static void _mco_jumpin(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
_mco_prepare_jumpin(co);
_mco_switch(&context->back_ctx, &context->ctx); /* Do the context switch. */
}
static void _mco_jumpout(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
_mco_prepare_jumpout(co);
_mco_switch(&context->ctx, &context->back_ctx); /* Do the context switch. */
}
static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
/* Determine the context and stack address. */
size_t co_addr = (size_t)co;
size_t context_addr = _mco_align_forward(co_addr + sizeof(mco_coro), 16);
size_t storage_addr = _mco_align_forward(context_addr + sizeof(_mco_context), 16);
size_t stack_addr = _mco_align_forward(storage_addr + desc->storage_size, 16);
/* Initialize context. */
_mco_context* context = (_mco_context*)context_addr;
memset(context, 0, sizeof(_mco_context));
/* Initialize storage. */
unsigned char* storage = (unsigned char*)storage_addr;
/* Initialize stack. */
void* stack_base = (void*)stack_addr;
size_t stack_size = desc->stack_size;
/* Make the context. */
mco_result res = _mco_makectx(co, &context->ctx, stack_base, stack_size);
if (res != MCO_SUCCESS) {
return res;
}
#ifdef MCO_USE_VALGRIND
context->valgrind_stack_id = VALGRIND_STACK_REGISTER(stack_addr, stack_addr + stack_size);
#endif
co->context = context;
co->stack_base = stack_base;
co->stack_size = stack_size;
co->storage = storage;
co->storage_size = desc->storage_size;
return MCO_SUCCESS;
}
static void _mco_destroy_context(mco_coro* co) {
#ifdef MCO_USE_VALGRIND
_mco_context* context = (_mco_context*)co->context;
if (context && context->valgrind_stack_id != 0) {
VALGRIND_STACK_DEREGISTER(context->valgrind_stack_id);
context->valgrind_stack_id = 0;
}
#else
_MCO_UNUSED(co);
#endif
}
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
_mco_align_forward(sizeof(_mco_context), 16) +
_mco_align_forward(desc->storage_size, 16) + stack_size + 16;
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
}
#endif /* defined(MCO_USE_UCONTEXT) || defined(MCO_USE_ASM) */
/* ---------------------------------------------------------------------------------------------- */
#ifdef MCO_USE_FIBERS
#ifdef _WIN32
typedef struct _mco_context {
void* fib;
void* back_fib;
} _mco_context;
static void _mco_jumpin(mco_coro* co) {
void* cur_fib = GetCurrentFiber();
if (!cur_fib ||
cur_fib ==
(void*)0x1e00) { /* See http://blogs.msdn.com/oldnewthing/archive/2004/12/31/344799.aspx
*/
cur_fib = ConvertThreadToFiber(NULL);
}
MCO_ASSERT(cur_fib != NULL);
_mco_context* context = (_mco_context*)co->context;
context->back_fib = cur_fib;
_mco_prepare_jumpin(co);
SwitchToFiber(context->fib);
}
static void CALLBACK _mco_wrap_main(void* co) {
_mco_main((mco_coro*)co);
}
static void _mco_jumpout(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
void* back_fib = context->back_fib;
MCO_ASSERT(back_fib != NULL);
context->back_fib = NULL;
_mco_prepare_jumpout(co);
SwitchToFiber(back_fib);
}
/* Reverse engineered Fiber struct, used to get stack base. */
typedef struct _mco_fiber {
LPVOID param; /* fiber param */
void* except; /* saved exception handlers list */
void* stack_base; /* top of fiber stack */
void* stack_limit; /* fiber stack low-water mark */
void* stack_allocation; /* base of the fiber stack allocation */
CONTEXT context; /* fiber context */
DWORD flags; /* fiber flags */
LPFIBER_START_ROUTINE start; /* start routine */
void** fls_slots; /* fiber storage slots */
} _mco_fiber;
static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
/* Determine the context address. */
size_t co_addr = (size_t)co;
size_t context_addr = _mco_align_forward(co_addr + sizeof(mco_coro), 16);
size_t storage_addr = _mco_align_forward(context_addr + sizeof(_mco_context), 16);
/* Initialize context. */
_mco_context* context = (_mco_context*)context_addr;
memset(context, 0, sizeof(_mco_context));
/* Initialize storage. */
unsigned char* storage = (unsigned char*)storage_addr;
/* Create the fiber. */
_mco_fiber* fib = (_mco_fiber*)CreateFiberEx(desc->stack_size, desc->stack_size,
FIBER_FLAG_FLOAT_SWITCH, _mco_wrap_main, co);
if (!fib) {
MCO_LOG("failed to create fiber");
return MCO_MAKE_CONTEXT_ERROR;
}
context->fib = fib;
co->context = context;
co->stack_base = (void*)((size_t)fib->stack_base - desc->stack_size);
co->stack_size = desc->stack_size;
co->storage = storage;
co->storage_size = desc->storage_size;
return MCO_SUCCESS;
}
static void _mco_destroy_context(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
if (context && context->fib) {
DeleteFiber(context->fib);
context->fib = NULL;
}
}
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
desc->coro_size = _mco_align_forward(sizeof(mco_coro), 16) +
_mco_align_forward(sizeof(_mco_context), 16) +
_mco_align_forward(desc->storage_size, 16) + 16;
desc->stack_size = stack_size;
}
#elif defined(__EMSCRIPTEN__)
#include <emscripten/fiber.h>
#ifndef MCO_ASYNCFY_STACK_SIZE
#define MCO_ASYNCFY_STACK_SIZE 16384
#endif
typedef struct _mco_context {
emscripten_fiber_t fib;
emscripten_fiber_t* back_fib;
} _mco_context;
static emscripten_fiber_t* running_fib = NULL;
static unsigned char main_asyncify_stack[MCO_ASYNCFY_STACK_SIZE];
static emscripten_fiber_t main_fib;
static void _mco_wrap_main(void* co) {
_mco_main((mco_coro*)co);
}
static void _mco_jumpin(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
emscripten_fiber_t* back_fib = running_fib;
if (!back_fib) {
back_fib = &main_fib;
emscripten_fiber_init_from_current_context(back_fib, main_asyncify_stack,
MCO_ASYNCFY_STACK_SIZE);
}
running_fib = &context->fib;
context->back_fib = back_fib;
_mco_prepare_jumpin(co);
emscripten_fiber_swap(back_fib, &context->fib); /* Do the context switch. */
}
static void _mco_jumpout(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
running_fib = context->back_fib;
_mco_prepare_jumpout(co);
emscripten_fiber_swap(&context->fib, context->back_fib); /* Do the context switch. */
}
static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
if (emscripten_has_asyncify() != 1) {
MCO_LOG("failed to create fiber because ASYNCIFY is not enabled");
return MCO_MAKE_CONTEXT_ERROR;
}
/* Determine the context address. */
size_t co_addr = (size_t)co;
size_t context_addr = _mco_align_forward(co_addr + sizeof(mco_coro), 16);
size_t storage_addr = _mco_align_forward(context_addr + sizeof(_mco_context), 16);
size_t stack_addr = _mco_align_forward(storage_addr + desc->storage_size, 16);
size_t asyncify_stack_addr = _mco_align_forward(stack_addr + desc->stack_size, 16);
/* Initialize context. */
_mco_context* context = (_mco_context*)context_addr;
memset(context, 0, sizeof(_mco_context));
/* Initialize storage. */
unsigned char* storage = (unsigned char*)storage_addr;
/* Initialize stack. */
void* stack_base = (void*)stack_addr;
size_t stack_size = asyncify_stack_addr - stack_addr;
void* asyncify_stack_base = (void*)asyncify_stack_addr;
size_t asyncify_stack_size = co_addr + desc->coro_size - asyncify_stack_addr;
/* Create the fiber. */
emscripten_fiber_init(&context->fib, _mco_wrap_main, co, stack_base, stack_size,
asyncify_stack_base, asyncify_stack_size);
co->context = context;
co->stack_base = stack_base;
co->stack_size = stack_size;
co->storage = storage;
co->storage_size = desc->storage_size;
return MCO_SUCCESS;
}
static void _mco_destroy_context(mco_coro* co) {
/* Nothing to do. */
_MCO_UNUSED(co);
}
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
desc->coro_size =
_mco_align_forward(sizeof(mco_coro), 16) + _mco_align_forward(sizeof(_mco_context), 16) +
_mco_align_forward(desc->storage_size, 16) + _mco_align_forward(stack_size, 16) +
_mco_align_forward(MCO_ASYNCFY_STACK_SIZE, 16) + 16;
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
}
#else
#error "Unsupported architecture for fibers method."
#endif
#endif /* MCO_USE_FIBERS */
/* ---------------------------------------------------------------------------------------------- */
#ifdef MCO_USE_ASYNCIFY
typedef struct _asyncify_stack_region {
void* start;
void* limit;
} _asyncify_stack_region;
typedef struct _mco_context {
int rewind_id;
_asyncify_stack_region stack_region;
} _mco_context;
__attribute__((import_module("asyncify"), import_name("start_unwind"))) void _asyncify_start_unwind(
void*);
__attribute__((import_module("asyncify"), import_name("stop_unwind"))) void _asyncify_stop_unwind();
__attribute__((import_module("asyncify"), import_name("start_rewind"))) void _asyncify_start_rewind(
void*);
__attribute__((import_module("asyncify"), import_name("stop_rewind"))) void _asyncify_stop_rewind();
MCO_NO_INLINE void _mco_jumpin(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
_mco_prepare_jumpin(co);
if (context->rewind_id > 0) { /* Begin rewinding until last yield point. */
_asyncify_start_rewind(&context->stack_region);
}
_mco_main(co); /* Run the coroutine function. */
_asyncify_stop_unwind(); /* Stop saving coroutine stack. */
}
static MCO_NO_INLINE void _mco_finish_jumpout(mco_coro* co, volatile int rewind_id) {
_mco_context* context = (_mco_context*)co->context;
int next_rewind_id = context->rewind_id + 1;
if (rewind_id == next_rewind_id) { /* Begins unwinding the stack (save locals and call stack to
rewind later) */
_mco_prepare_jumpout(co);
context->rewind_id = next_rewind_id;
_asyncify_start_unwind(&context->stack_region);
} else if (rewind_id == context->rewind_id) { /* Continue from yield point. */
_asyncify_stop_rewind();
}
/* Otherwise, we should be rewinding, let it continue... */
}
MCO_NO_INLINE void _mco_jumpout(mco_coro* co) {
_mco_context* context = (_mco_context*)co->context;
/*
Save rewind point into a local, that should be restored when rewinding.
That is "rewind_id != co->rewind_id + 1" may be true when rewinding.
Use volatile here just to be safe from compiler optimizing this out.
*/
volatile int rewind_id = context->rewind_id + 1;
_mco_finish_jumpout(co, rewind_id);
}
static mco_result _mco_create_context(mco_coro* co, mco_desc* desc) {
/* Determine the context address. */
size_t co_addr = (size_t)co;
size_t context_addr = _mco_align_forward(co_addr + sizeof(mco_coro), 16);
size_t storage_addr = _mco_align_forward(context_addr + sizeof(_mco_context), 16);
size_t stack_addr = _mco_align_forward(storage_addr + desc->storage_size, 16);
/* Initialize context. */
_mco_context* context = (_mco_context*)context_addr;
memset(context, 0, sizeof(_mco_context));
/* Initialize storage. */
unsigned char* storage = (unsigned char*)storage_addr;
/* Initialize stack. */
void* stack_base = (void*)stack_addr;
size_t stack_size = desc->stack_size;
context->stack_region.start = stack_base;
context->stack_region.limit = (void*)((size_t)stack_base + stack_size);
co->context = context;
co->stack_base = stack_base;
co->stack_size = stack_size;
co->storage = storage;
co->storage_size = desc->storage_size;
return MCO_SUCCESS;
}
static void _mco_destroy_context(mco_coro* co) {
/* Nothing to do. */
_MCO_UNUSED(co);
}
static MCO_FORCE_INLINE void _mco_init_desc_sizes(mco_desc* desc, size_t stack_size) {
desc->coro_size =
_mco_align_forward(sizeof(mco_coro), 16) + _mco_align_forward(sizeof(_mco_context), 16) +
_mco_align_forward(desc->storage_size, 16) + _mco_align_forward(stack_size, 16) + 16;
desc->stack_size = stack_size; /* This is just a hint, it won't be the real one. */
}
#endif /* MCO_USE_ASYNCIFY */
/* ---------------------------------------------------------------------------------------------- */
mco_desc mco_desc_init(void (*func)(mco_coro* co), size_t stack_size) {
if (stack_size != 0) {
/* Stack size should be at least `MCO_MIN_STACK_SIZE`. */
if (stack_size < MCO_MIN_STACK_SIZE) {
stack_size = MCO_MIN_STACK_SIZE;
}
} else {
stack_size = MCO_DEFAULT_STACK_SIZE;
}
stack_size = _mco_align_forward(stack_size, 16); /* Stack size should be aligned to 16 bytes. */
mco_desc desc;
memset(&desc, 0, sizeof(mco_desc));
#ifndef MCO_NO_DEFAULT_ALLOCATOR
/* Set default allocators. */
desc.alloc_cb = mco_alloc;
desc.dealloc_cb = mco_dealloc;
#endif
desc.func = func;
desc.storage_size = MCO_DEFAULT_STORAGE_SIZE;
_mco_init_desc_sizes(&desc, stack_size);
return desc;
}
static mco_result _mco_validate_desc(mco_desc* desc) {
if (!desc) {
MCO_LOG("coroutine description is NULL");
return MCO_INVALID_ARGUMENTS;
}
if (!desc->func) {
MCO_LOG("coroutine function in invalid");
return MCO_INVALID_ARGUMENTS;
}
if (desc->stack_size < MCO_MIN_STACK_SIZE) {
MCO_LOG("coroutine stack size is too small");
return MCO_INVALID_ARGUMENTS;
}
if (desc->coro_size < sizeof(mco_coro)) {
MCO_LOG("coroutine size is invalid");
return MCO_INVALID_ARGUMENTS;
}
return MCO_SUCCESS;
}
mco_result mco_init(mco_coro* co, mco_desc* desc) {
if (!co) {
MCO_LOG("attempt to initialize an invalid coroutine");
return MCO_INVALID_COROUTINE;
}
memset(co, 0, sizeof(mco_coro));
/* Validate coroutine description. */
mco_result res = _mco_validate_desc(desc);
if (res != MCO_SUCCESS)
return res;
/* Create the coroutine. */
res = _mco_create_context(co, desc);
if (res != MCO_SUCCESS)
return res;
co->state = MCO_SUSPENDED; /* We initialize in suspended state. */
co->dealloc_cb = desc->dealloc_cb;
co->coro_size = desc->coro_size;
co->allocator_data = desc->allocator_data;
co->func = desc->func;
co->user_data = desc->user_data;
#ifdef _MCO_USE_TSAN
co->tsan_fiber = __tsan_create_fiber(0);
#endif
co->magic_number = MCO_MAGIC_NUMBER;
return MCO_SUCCESS;
}
mco_result mco_uninit(mco_coro* co) {
if (!co) {
MCO_LOG("attempt to uninitialize an invalid coroutine");
return MCO_INVALID_COROUTINE;
}
/* Cannot uninitialize while running. */
if (!(co->state == MCO_SUSPENDED || co->state == MCO_DEAD)) {
MCO_LOG("attempt to uninitialize a coroutine that is not dead or suspended");
return MCO_INVALID_OPERATION;
}
/* The coroutine is now dead and cannot be used anymore. */
co->state = MCO_DEAD;
#ifdef _MCO_USE_TSAN
if (co->tsan_fiber != NULL) {
__tsan_destroy_fiber(co->tsan_fiber);
co->tsan_fiber = NULL;
}
#endif
_mco_destroy_context(co);
return MCO_SUCCESS;
}
mco_result mco_create(mco_coro** out_co, mco_desc* desc) {
/* Validate input. */
if (!out_co) {
MCO_LOG("coroutine output pointer is NULL");
return MCO_INVALID_POINTER;
}
if (!desc || !desc->alloc_cb || !desc->dealloc_cb) {
*out_co = NULL;
MCO_LOG("coroutine allocator description is not set");
return MCO_INVALID_ARGUMENTS;
}
/* Allocate the coroutine. */
mco_coro* co = (mco_coro*)desc->alloc_cb(desc->coro_size, desc->allocator_data);
if (!co) {
MCO_LOG("coroutine allocation failed");
*out_co = NULL;
return MCO_OUT_OF_MEMORY;
}
/* Initialize the coroutine. */
mco_result res = mco_init(co, desc);
if (res != MCO_SUCCESS) {
desc->dealloc_cb(co, desc->coro_size, desc->allocator_data);
*out_co = NULL;
return res;
}
*out_co = co;
return MCO_SUCCESS;
}
mco_result mco_destroy(mco_coro* co) {
if (!co) {
MCO_LOG("attempt to destroy an invalid coroutine");
return MCO_INVALID_COROUTINE;
}
/* Uninitialize the coroutine first. */
mco_result res = mco_uninit(co);
if (res != MCO_SUCCESS)
return res;
/* Free the coroutine. */
if (!co->dealloc_cb) {
MCO_LOG("attempt destroy a coroutine that has no free callback");
return MCO_INVALID_POINTER;
}
co->dealloc_cb(co, co->coro_size, co->allocator_data);
return MCO_SUCCESS;
}
mco_result mco_resume(mco_coro* co) {
if (!co) {
MCO_LOG("attempt to resume an invalid coroutine");
return MCO_INVALID_COROUTINE;
}
if (co->state != MCO_SUSPENDED) { /* Can only resume coroutines that are suspended. */
MCO_LOG("attempt to resume a coroutine that is not suspended");
return MCO_NOT_SUSPENDED;
}
co->state = MCO_RUNNING; /* The coroutine is now running. */
_mco_jumpin(co);
return MCO_SUCCESS;
}
mco_result mco_yield(mco_coro* co) {
if (!co) {
MCO_LOG("attempt to yield an invalid coroutine");
return MCO_INVALID_COROUTINE;
}
#ifdef MCO_USE_ASYNCIFY
/* Asyncify already checks for stack overflow. */
#else
/* This check happens when the stack overflow already happened, but better later than never. */
volatile size_t dummy;
size_t stack_addr = (size_t)&dummy;
size_t stack_min = (size_t)co->stack_base;
size_t stack_max = stack_min + co->stack_size;
if (co->magic_number != MCO_MAGIC_NUMBER || stack_addr < stack_min ||
stack_addr > stack_max) { /* Stack overflow. */
MCO_LOG("coroutine stack overflow, try increasing the stack size");
return MCO_STACK_OVERFLOW;
}
#endif
if (co->state != MCO_RUNNING) { /* Can only yield coroutines that are running. */
MCO_LOG("attempt to yield a coroutine that is not running");
return MCO_NOT_RUNNING;
}
co->state = MCO_SUSPENDED; /* The coroutine is now suspended. */
_mco_jumpout(co);
return MCO_SUCCESS;
}
mco_state mco_status(mco_coro* co) {
if (co != NULL) {
return co->state;
}
return MCO_DEAD;
}
void* mco_get_user_data(mco_coro* co) {
if (co != NULL) {
return co->user_data;
}
return NULL;
}
mco_result mco_push(mco_coro* co, const void* src, size_t len) {
if (!co) {
MCO_LOG("attempt to use an invalid coroutine");
return MCO_INVALID_COROUTINE;
} else if (len > 0) {
size_t bytes_stored = co->bytes_stored + len;
if (bytes_stored > co->storage_size) {
MCO_LOG("attempt to push too many bytes into coroutine storage");
return MCO_NOT_ENOUGH_SPACE;
}
if (!src) {
MCO_LOG("attempt push a null pointer into coroutine storage");
return MCO_INVALID_POINTER;
}
memcpy(&co->storage[co->bytes_stored], src, len);
co->bytes_stored = bytes_stored;
}
return MCO_SUCCESS;
}
mco_result mco_pop(mco_coro* co, void* dest, size_t len) {
if (!co) {
MCO_LOG("attempt to use an invalid coroutine");
return MCO_INVALID_COROUTINE;
} else if (len > 0) {
if (len > co->bytes_stored) {
MCO_LOG("attempt to pop too many bytes from coroutine storage");
return MCO_NOT_ENOUGH_SPACE;
}
size_t bytes_stored = co->bytes_stored - len;
if (dest) {
memcpy(dest, &co->storage[bytes_stored], len);
}
co->bytes_stored = bytes_stored;
#ifdef MCO_ZERO_MEMORY
/* Clear garbage in the discarded storage. */
memset(&co->storage[bytes_stored], 0, len);
#endif
}
return MCO_SUCCESS;
}
mco_result mco_peek(mco_coro* co, void* dest, size_t len) {
if (!co) {
MCO_LOG("attempt to use an invalid coroutine");
return MCO_INVALID_COROUTINE;
} else if (len > 0) {
if (len > co->bytes_stored) {
MCO_LOG("attempt to peek too many bytes from coroutine storage");
return MCO_NOT_ENOUGH_SPACE;
}
if (!dest) {
MCO_LOG("attempt peek into a null pointer");
return MCO_INVALID_POINTER;
}
memcpy(dest, &co->storage[co->bytes_stored - len], len);
}
return MCO_SUCCESS;
}
size_t mco_get_bytes_stored(mco_coro* co) {
if (co == NULL) {
return 0;
}
return co->bytes_stored;
}
size_t mco_get_storage_size(mco_coro* co) {
if (co == NULL) {
return 0;
}
return co->storage_size;
}
#ifdef MCO_NO_MULTITHREAD
mco_coro* mco_running(void) {
return mco_current_co;
}
#else
static MCO_NO_INLINE mco_coro* _mco_running(void) {
return mco_current_co;
}
mco_coro* mco_running(void) {
/*
Compilers aggressively optimize the use of TLS by caching loads.
Since fiber code can migrate between threads its possible for the load to be stale.
To prevent this from happening we avoid inline functions.
*/
mco_coro* (*volatile func)(void) = _mco_running;
return func();
}
#endif
const char* mco_result_description(mco_result res) {
switch (res) {
case MCO_SUCCESS:
return "No error";
case MCO_GENERIC_ERROR:
return "Generic error";
case MCO_INVALID_POINTER:
return "Invalid pointer";
case MCO_INVALID_COROUTINE:
return "Invalid coroutine";
case MCO_NOT_SUSPENDED:
return "Coroutine not suspended";
case MCO_NOT_RUNNING:
return "Coroutine not running";
case MCO_MAKE_CONTEXT_ERROR:
return "Make context error";
case MCO_SWITCH_CONTEXT_ERROR:
return "Switch context error";
case MCO_NOT_ENOUGH_SPACE:
return "Not enough space";
case MCO_OUT_OF_MEMORY:
return "Out of memory";
case MCO_INVALID_ARGUMENTS:
return "Invalid arguments";
case MCO_INVALID_OPERATION:
return "Invalid operation";
case MCO_STACK_OVERFLOW:
return "Stack overflow";
}
return "Unknown error";
}
#ifdef __cplusplus
}
#endif
#endif /* MINICORO_IMPL */
/*
This software is available as a choice of the following licenses. Choose
whichever you prefer.
===============================================================================
ALTERNATIVE 1 - Public Domain (www.unlicense.org)
===============================================================================
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
===============================================================================
ALTERNATIVE 2 - MIT No Attribution
===============================================================================
Copyright (c) 2021-2023 Eduardo Bart (https://github.com/edubart/minicoro)
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/