Picklock_RCM/bdk/soc/i2c.c

425 lines
9.9 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2020 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <soc/i2c.h>
#include <utils/util.h>
#define I2C_PACKET_PROT_I2C BIT(4)
#define I2C_HEADER_CONT_XFER BIT(15)
#define I2C_HEADER_REP_START BIT(16)
#define I2C_HEADER_IE_ENABLE BIT(17)
#define I2C_HEADER_READ BIT(19)
#define I2C_CNFG (0x00 / 4)
#define CMD1_WRITE (0 << 6)
#define CMD1_READ BIT(6)
#define NORMAL_MODE_GO BIT(9)
#define PACKET_MODE_GO BIT(10)
#define NEW_MASTER_FSM BIT(11)
#define DEBOUNCE_CNT_4T (2 << 12)
#define I2C_CMD_ADDR0 (0x04 / 4)
#define ADDR0_WRITE 0
#define ADDR0_READ 1
#define I2C_CMD_DATA1 (0x0C / 4)
#define I2C_CMD_DATA2 (0x10 / 4)
#define I2C_STATUS (0x1C / 4)
#define I2C_STATUS_NOACK (0xF << 0)
#define I2C_STATUS_BUSY BIT(8)
#define I2C_TX_FIFO (0x50 / 4)
#define I2C_RX_FIFO (0x54 / 4)
#define I2C_FIFO_CONTROL (0x5C / 4)
#define RX_FIFO_FLUSH BIT(0)
#define TX_FIFO_FLUSH BIT(1)
#define I2C_FIFO_STATUS (0x60 / 4)
#define RX_FIFO_FULL_CNT (0xF << 0)
#define TX_FIFO_EMPTY_CNT (0xF << 4)
#define I2C_INT_EN (0x64 / 4)
#define I2C_INT_STATUS (0x68 / 4)
#define I2C_INT_SOURCE (0x70 / 4)
#define RX_FIFO_DATA_REQ BIT(0)
#define TX_FIFO_DATA_REQ BIT(1)
#define ARB_LOST BIT(2)
#define NO_ACK BIT(3)
#define RX_FIFO_UNDER BIT(4)
#define TX_FIFO_OVER BIT(5)
#define ALL_PACKETS_COMPLETE BIT(6)
#define PACKET_COMPLETE BIT(7)
#define BUS_CLEAR_DONE BIT(11)
#define I2C_CLK_DIVISOR (0x6C / 4)
#define I2C_BUS_CLEAR_CONFIG (0x84 / 4)
#define BC_ENABLE BIT(0)
#define BC_TERMINATE BIT(1)
#define I2C_BUS_CLEAR_STATUS (0x88 / 4)
#define I2C_CONFIG_LOAD (0x8C / 4)
#define MSTR_CONFIG_LOAD BIT(0)
#define TIMEOUT_CONFIG_LOAD BIT(2)
static const u32 i2c_addrs[] = {
0x7000C000, // I2C_1.
0x7000C400, // I2C_2.
0x7000C500, // I2C_3.
0x7000C700, // I2C_4.
0x7000D000, // I2C_5.
0x7000D100 // I2C_6.
};
static void _i2c_load_cfg_wait(vu32 *base)
{
base[I2C_CONFIG_LOAD] = BIT(5) | TIMEOUT_CONFIG_LOAD | MSTR_CONFIG_LOAD;
for (u32 i = 0; i < 20; i++)
{
usleep(1);
if (!(base[I2C_CONFIG_LOAD] & MSTR_CONFIG_LOAD))
break;
}
}
static int _i2c_send_single(u32 i2c_idx, u32 dev_addr, u8 *buf, u32 size)
{
if (size > 8)
return 0;
u32 tmp = 0;
vu32 *base = (vu32 *)i2c_addrs[i2c_idx];
// Set device address and send mode.
base[I2C_CMD_ADDR0] = dev_addr << 1 | ADDR0_WRITE;
if (size > 4)
{
memcpy(&tmp, buf, 4);
base[I2C_CMD_DATA1] = tmp; //Set value.
tmp = 0;
memcpy(&tmp, buf + 4, size - 4);
base[I2C_CMD_DATA2] = tmp;
}
else
{
memcpy(&tmp, buf, size);
base[I2C_CMD_DATA1] = tmp; //Set value.
}
// Set size and send mode.
base[I2C_CNFG] = ((size - 1) << 1) | DEBOUNCE_CNT_4T | NEW_MASTER_FSM | CMD1_WRITE;
// Load configuration.
_i2c_load_cfg_wait(base);
// Initiate transaction on normal mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | NORMAL_MODE_GO;
u32 timeout = get_tmr_ms() + 400; // Actual for max 8 bytes at 100KHz is 0.74ms.
while (base[I2C_STATUS] & I2C_STATUS_BUSY)
{
if (get_tmr_ms() > timeout)
return 0;
}
if (base[I2C_STATUS] & I2C_STATUS_NOACK)
return 0;
return 1;
}
static int _i2c_recv_single(u32 i2c_idx, u8 *buf, u32 size, u32 dev_addr)
{
if (size > 8)
return 0;
vu32 *base = (vu32 *)i2c_addrs[i2c_idx];
// Set device address and recv mode.
base[I2C_CMD_ADDR0] = (dev_addr << 1) | ADDR0_READ;
// Set size and recv mode.
base[I2C_CNFG] = ((size - 1) << 1) | DEBOUNCE_CNT_4T | NEW_MASTER_FSM | CMD1_READ;
// Load configuration.
_i2c_load_cfg_wait(base);
// Initiate transaction on normal mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | NORMAL_MODE_GO;
u32 timeout = get_tmr_ms() + 400; // Actual for max 8 bytes at 100KHz is 0.74ms.
while (base[I2C_STATUS] & I2C_STATUS_BUSY)
{
if (get_tmr_ms() > timeout)
return 0;
}
if (base[I2C_STATUS] & I2C_STATUS_NOACK)
return 0;
u32 tmp = base[I2C_CMD_DATA1]; // Get LS value.
if (size > 4)
{
memcpy(buf, &tmp, 4);
tmp = base[I2C_CMD_DATA2]; // Get MS value.
memcpy(buf + 4, &tmp, size - 4);
}
else
memcpy(buf, &tmp, size);
return 1;
}
static int _i2c_send_pkt(u32 i2c_idx, u8 *buf, u32 size, u32 dev_addr)
{
if (size > 32)
return 0;
int res = 0;
vu32 *base = (vu32 *)i2c_addrs[i2c_idx];
// Enable interrupts.
base[I2C_INT_EN] = ALL_PACKETS_COMPLETE | PACKET_COMPLETE | NO_ACK |
ARB_LOST | TX_FIFO_OVER | RX_FIFO_UNDER | TX_FIFO_DATA_REQ;
base[I2C_INT_STATUS] = base[I2C_INT_STATUS];
// Set device address and recv mode.
base[I2C_CMD_ADDR0] = (dev_addr << 1) | ADDR0_READ;
// Set recv mode.
base[I2C_CNFG] = DEBOUNCE_CNT_4T | NEW_MASTER_FSM | CMD1_WRITE;
// Set and flush FIFO.
base[I2C_FIFO_CONTROL] = RX_FIFO_FLUSH | TX_FIFO_FLUSH;
// Load configuration.
_i2c_load_cfg_wait(base);
// Initiate transaction on packet mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | PACKET_MODE_GO;
u32 hdr[3];
hdr[0] = I2C_PACKET_PROT_I2C;
hdr[1] = size - 1;
hdr[2] = I2C_HEADER_IE_ENABLE | I2C_HEADER_CONT_XFER | (dev_addr << 1);
// Send header with request.
base[I2C_TX_FIFO] = hdr[0];
base[I2C_TX_FIFO] = hdr[1];
base[I2C_TX_FIFO] = hdr[2];
u32 timeout = get_tmr_ms() + 400;
while (size)
{
if (base[I2C_FIFO_STATUS] & TX_FIFO_EMPTY_CNT)
{
u32 tmp = 0;
u32 snd_size = MIN(size, 4);
memcpy(&tmp, buf, snd_size);
base[I2C_TX_FIFO] = tmp;
buf += snd_size;
size -= snd_size;
}
if (get_tmr_ms() > timeout)
{
res = 1;
break;
}
}
if (base[I2C_STATUS] & I2C_STATUS_NOACK || base[I2C_INT_STATUS] & NO_ACK)
res = 1;
// Disable packet mode.
usleep(20);
base[I2C_CNFG] &= 0xFFFFF9FF;
// Disable interrupts.
base[I2C_INT_EN] = 0;
return res;
}
static int _i2c_recv_pkt(u32 i2c_idx, u8 *buf, u32 size, u32 dev_addr, u32 reg)
{
if (size > 32)
return 0;
int res = 0;
vu32 *base = (vu32 *)i2c_addrs[i2c_idx];
// Enable interrupts.
base[I2C_INT_EN] = ALL_PACKETS_COMPLETE | PACKET_COMPLETE | NO_ACK |
ARB_LOST | TX_FIFO_OVER | RX_FIFO_UNDER | RX_FIFO_DATA_REQ;
base[I2C_INT_STATUS] = base[I2C_INT_STATUS];
// Set device address and recv mode.
base[I2C_CMD_ADDR0] = (dev_addr << 1) | ADDR0_READ;
// Set recv mode.
base[I2C_CNFG] = DEBOUNCE_CNT_4T | NEW_MASTER_FSM | CMD1_READ;
// Set and flush FIFO.
base[I2C_FIFO_CONTROL] = RX_FIFO_FLUSH | TX_FIFO_FLUSH;
// Load configuration.
_i2c_load_cfg_wait(base);
// Initiate transaction on packet mode.
base[I2C_CNFG] = (base[I2C_CNFG] & 0xFFFFF9FF) | PACKET_MODE_GO;
// Send reg request.
u32 hdr[3];
hdr[0] = I2C_PACKET_PROT_I2C;
hdr[1] = 1 - 1;
hdr[2] = I2C_HEADER_REP_START | (dev_addr << 1);
// Send header with reg request.
base[I2C_TX_FIFO] = hdr[0];
base[I2C_TX_FIFO] = hdr[1];
base[I2C_TX_FIFO] = hdr[2];
base[I2C_TX_FIFO] = reg;
u32 timeout = get_tmr_ms() + 400;
while (!(base[I2C_FIFO_STATUS] & TX_FIFO_EMPTY_CNT))
if (get_tmr_ms() > timeout)
break;
// Send read request.
hdr[1] = size - 1;
hdr[2] = I2C_HEADER_READ | (dev_addr << 1);
// Send header with read request.
base[I2C_TX_FIFO] = hdr[0];
base[I2C_TX_FIFO] = hdr[1];
base[I2C_TX_FIFO] = hdr[2];
timeout = get_tmr_ms() + 400;
while (size)
{
if (base[I2C_FIFO_STATUS] & RX_FIFO_FULL_CNT)
{
u32 rcv_size = MIN(size, 4);
u32 tmp = base[I2C_RX_FIFO];
memcpy(buf, &tmp, rcv_size);
buf += rcv_size;
size -= rcv_size;
}
if (get_tmr_ms() > timeout)
{
res = 1;
break;
}
}
if (base[I2C_STATUS] & I2C_STATUS_NOACK || base[I2C_INT_STATUS] & NO_ACK)
res = 1;
// Disable packet mode.
usleep(20);
base[I2C_CNFG] &= 0xFFFFF9FF;
// Disable interrupts.
base[I2C_INT_EN] = 0;
return res;
}
void i2c_init(u32 i2c_idx)
{
vu32 *base = (vu32 *)i2c_addrs[i2c_idx];
base[I2C_CLK_DIVISOR] = (5 << 16) | 1; // SF mode Div: 6, HS mode div: 2.
base[I2C_BUS_CLEAR_CONFIG] = (9 << 16) | BC_TERMINATE | BC_ENABLE;
// Load configuration.
_i2c_load_cfg_wait(base);
for (u32 i = 0; i < 10; i++)
{
usleep(20000);
if (base[I2C_INT_STATUS] & BUS_CLEAR_DONE)
break;
}
(vu32)base[I2C_BUS_CLEAR_STATUS];
base[I2C_INT_STATUS] = base[I2C_INT_STATUS];
}
int i2c_recv_buf(u8 *buf, u32 size, u32 i2c_idx, u32 dev_addr)
{
return _i2c_recv_single(i2c_idx, buf, size, dev_addr);
}
int i2c_send_buf_big(u32 i2c_idx, u32 dev_addr, u8 *buf, u32 size)
{
if (size > 32)
return 0;
return _i2c_send_pkt(i2c_idx, buf, size, dev_addr);
}
int i2c_recv_buf_big(u8 *buf, u32 size, u32 i2c_idx, u32 dev_addr, u32 reg)
{
return _i2c_recv_pkt(i2c_idx, buf, size, dev_addr, reg);
}
int i2c_send_buf_small(u32 i2c_idx, u32 dev_addr, u32 reg, u8 *buf, u32 size)
{
u8 tmp[4];
if (size > 7)
return 0;
tmp[0] = reg;
memcpy(tmp + 1, buf, size);
return _i2c_send_single(i2c_idx, dev_addr, tmp, size + 1);
}
int i2c_recv_buf_small(u8 *buf, u32 size, u32 i2c_idx, u32 dev_addr, u32 reg)
{
int res = _i2c_send_single(i2c_idx, dev_addr, (u8 *)&reg, 1);
if (res)
res = _i2c_recv_single(i2c_idx, buf, size, dev_addr);
return res;
}
int i2c_send_byte(u32 i2c_idx, u32 dev_addr, u32 reg, u8 val)
{
return i2c_send_buf_small(i2c_idx, dev_addr, reg, &val, 1);
}
u8 i2c_recv_byte(u32 i2c_idx, u32 dev_addr, u32 reg)
{
u8 tmp = 0;
i2c_recv_buf_small(&tmp, 1, i2c_idx, dev_addr, reg);
return tmp;
}