/* * Copyright (c) 2019-2021 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "keys.h" #include "../../keygen/tsec_keygen.h" #include "../config.h" #include #include "../frontend/gui.h" #include #include "../gfx/tui.h" #include "../hos/hos.h" #include #include #include #include #include #include #include #include #include #include #include #include "../storage/emummc.h" #include "../storage/nx_emmc.h" #include "../storage/nx_emmc_bis.h" #include #include #include #include #include #include #include "key_sources.inl" #include extern hekate_config h_cfg; static u32 _key_count = 0, _titlekey_count = 0; static u32 start_time, end_time; u32 color_idx = 0; static ALWAYS_INLINE u32 _read_le_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 0) ) | (*(u8*)(buffer + offset + 1) << 0x08) | (*(u8*)(buffer + offset + 2) << 0x10) | (*(u8*)(buffer + offset + 3) << 0x18); } static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 3) ) | (*(u8*)(buffer + offset + 2) << 0x08) | (*(u8*)(buffer + offset + 1) << 0x10) | (*(u8*)(buffer + offset + 0) << 0x18); } // key functions static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; }; static void _save_key(const char *name, const void *data, u32 len, char *outbuf); static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf); static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed); static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation); static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision); // titlekey functions static bool _test_key_pair(const void *E, const void *D, const void *N); static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) { // Relies on the SBK being properly set in slot 14 se_aes_crypt_block_ecb(14, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); // Derive all master keys based on Mariko KEK for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) { // Relies on the Mariko KEK being properly set in slot 12 se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source) se_aes_key_set(8, keys->master_kek[i], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i], master_key_source); } } static int _run_ams_keygen(key_derivation_ctx_t *keys) { tsec_ctxt_t tsec_ctxt; tsec_ctxt.fw = tsec_keygen; tsec_ctxt.size = sizeof(tsec_keygen); tsec_ctxt.type = TSEC_FW_TYPE_NEW; u32 retries = 0; while (tsec_query(keys->temp_key, &tsec_ctxt) < 0) { retries++; if (retries > 15) { EPRINTF("Failed to run keygen."); return -1; } } return 0; } static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool is_dev) { if (!h_cfg.t210b01) { u32 tsec_root_key_slot = is_dev ? 11 : 13; // Derive all master keys based on current root key for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) { se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks) se_aes_key_set(8, keys->master_kek[i + KB_FIRMWARE_VERSION_620], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys) se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i + KB_FIRMWARE_VERSION_620], master_key_source); } } // Derive all lower master keys for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i - 1], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); } se_aes_key_set(8, keys->master_key[0], AES_128_KEY_SIZE); se_aes_crypt_block_ecb(8, DECRYPT, keys->temp_key, is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); if (_key_exists(keys->temp_key)) { EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod"); memset(keys->master_key, 0, sizeof(keys->master_key)); } } static void _derive_keyblob_keys(key_derivation_ctx_t *keys) { u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE); u32 keyblob_mac[AES_128_KEY_SIZE / 4] = {0}; bool have_keyblobs = true; if (FUSE(FUSE_PRIVATE_KEY0) == 0xFFFFFFFF) { u8 *aes_keys = (u8 *)calloc(SZ_4K, 1); se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE); memcpy(keys->sbk, aes_keys + 14 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); free(aes_keys); } else { keys->sbk[0] = FUSE(FUSE_PRIVATE_KEY0); keys->sbk[1] = FUSE(FUSE_PRIVATE_KEY1); keys->sbk[2] = FUSE(FUSE_PRIVATE_KEY2); keys->sbk[3] = FUSE(FUSE_PRIVATE_KEY3); } if (!emmc_storage.initialized) { have_keyblobs = false; } else if (!emummc_storage_read(KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_block)) { EPRINTF("Unable to read keyblobs."); have_keyblobs = false; } else { have_keyblobs = true; } encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block; for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) { minerva_periodic_training(); se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk) se_aes_key_set(7, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); se_aes_crypt_block_ecb(7, DECRYPT, keys->keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) if (i == 0) { se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); } if (!have_keyblobs) { continue; } // verify keyblob is not corrupt se_aes_key_set(10, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i])); se_aes_cmac(10, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t)); if (memcmp(current_keyblob->cmac, keyblob_mac, sizeof(keyblob_mac)) != 0) { EPRINTFARGS("Keyblob %x corrupt.", i); continue; } // decrypt keyblobs se_aes_key_set(6, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); se_aes_crypt_ctr(6, &keys->keyblob[i], sizeof(keyblob_t), ¤t_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv); memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i])); memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i])); se_aes_key_set(7, keys->master_kek[i], sizeof(keys->master_kek[i])); if (!_key_exists(keys->master_key[i])) { se_aes_crypt_block_ecb(7, DECRYPT, keys->master_key[i], master_key_source); } } free(keyblob_block); } static void _derive_bis_keys(key_derivation_ctx_t *keys) { /* key = unwrap(source, wrapped_key): key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key */ minerva_periodic_training(); u32 key_generation = fuse_read_odm_keygen_rev(); if (key_generation) key_generation--; if (!(_key_exists(keys->device_key) || (key_generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) { return; } _generate_specific_aes_key(8, keys, &keys->bis_key[0], &bis_key_sources[0], key_generation); // kek = generate_kek(bkeks, devkey, aeskek, aeskey) _get_device_key(8, keys, keys->temp_key, key_generation); _generate_kek(8, bis_kek_source, keys->temp_key, aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[1], AES_128_KEY_SIZE * 2, bis_key_sources[1], AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[2], AES_128_KEY_SIZE * 2, bis_key_sources[2], AES_128_KEY_SIZE * 2); memcpy(keys->bis_key[3], keys->bis_key[2], 0x20); } static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) { if (_key_exists(keys->master_key[0])) { _generate_kek(8, header_kek_source, keys->master_key[0], aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_ecb(8, DECRYPT, keys->header_key, AES_128_KEY_SIZE * 2, header_key_source, AES_128_KEY_SIZE * 2); } } static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) { if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) { _get_device_key(8, keys, keys->temp_key, 0); _generate_kek(8, save_mac_kek_source, keys->temp_key, aes_kek_generation_source, NULL); se_aes_crypt_block_ecb(8, DECRYPT, keys->save_mac_key, save_mac_key_source); } if (_key_exists(keys->master_key[0])) { for (u32 i = 0; i < AES_128_KEY_SIZE; i++) keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; _generate_kek(8, eticket_rsa_kekek_source, keys->master_key[0], keys->temp_key, NULL); se_aes_crypt_block_ecb(8, DECRYPT, keys->eticket_rsa_kek, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source); for (u32 i = 0; i < AES_128_KEY_SIZE; i++) keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; _generate_kek(8, ssl_rsa_kek_source_x, keys->master_key[0], keys->temp_key, NULL); se_aes_crypt_block_ecb(8, DECRYPT, keys->ssl_rsa_kek, ssl_rsa_kek_source_y); } } static void _derive_per_generation_keys(key_derivation_ctx_t *keys) { for (u32 i = 0; i < KB_FIRMWARE_VERSION_MAX + 1; i++) { if (!_key_exists(keys->master_key[i])) continue; for (u32 j = 0; j < 3; j++) { _generate_kek(8, key_area_key_sources[j], keys->master_key[i], aes_kek_generation_source, NULL); se_aes_crypt_block_ecb(8, DECRYPT, keys->key_area_key[j][i], aes_key_generation_source); } se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE); se_aes_crypt_block_ecb(8, DECRYPT, keys->package2_key[i], package2_key_source); se_aes_crypt_block_ecb(8, DECRYPT, keys->titlekek[i], titlekek_source); } } static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) { FIL fp; u64 br = buf_size; u64 offset = 0; u32 file_tkey_count = 0; u32 save_x = gfx_con.x, save_y = gfx_con.y; bool is_personalized = rsa_keypair != NULL; u32 start_titlekey_count = _titlekey_count; char titlekey_save_path[32] = "bis:/save/80000000000000E1"; if (is_personalized) { titlekey_save_path[25] = '2'; gfx_printf("\n%kPersonalized... ", colors[color_idx % 6]); } else { gfx_printf("\n%kCommon... ", colors[color_idx % 6]); } if (f_open(&fp, titlekey_save_path, FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to open e1 save. Skipping."); return false; } save_ctx_t *save_ctx = calloc(1, sizeof(save_ctx_t)); save_init(save_ctx, &fp, save_mac_key, 0); bool save_process_success = save_process(save_ctx); TPRINTF("\n Save process..."); if (!save_process_success) { EPRINTF("Failed to process es save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } const char ticket_bin_path[32] = "/ticket.bin"; const char ticket_list_bin_path[32] = "/ticket_list.bin"; save_data_file_ctx_t ticket_file; if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) { EPRINTF("Unable to locate ticket_list.bin in save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } bool terminator_reached = false; while (offset < ticket_file.size && !terminator_reached) { if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size) break; offset += br; minerva_periodic_training(); ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer; for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) { if (curr_ticket_record->rights_id[0] == 0xFF) { terminator_reached = true; break; } file_tkey_count++; } } TPRINTF(" Count keys..."); if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) { EPRINTF("Unable to locate ticket.bin in save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } const u32 ticket_sig_type_rsa2048_sha256 = 0x10004; offset = 0; terminator_reached = false; u32 pct = 0, last_pct = 0, i = 0; while (offset < ticket_file.size && !terminator_reached) { if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size) break; offset += br; ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer; for (u32 j = 0; j < buf_size; j += sizeof(ticket_t), curr_ticket++) { minerva_periodic_training(); pct = (_titlekey_count - start_titlekey_count) * 100 / file_tkey_count; if (pct > last_pct && pct <= 100) { last_pct = pct; tui_pbar(save_x, save_y, pct, COLOR_GREEN, 0xFF155500); } if (i == file_tkey_count || curr_ticket->signature_type == 0) { terminator_reached = true; break; } if (curr_ticket->signature_type != ticket_sig_type_rsa2048_sha256) { i++; continue; } if (is_personalized) { se_rsa_exp_mod(0, curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block)); if (se_rsa_oaep_decode( curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]), null_hash, sizeof(null_hash), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block) ) != sizeof(titlekey_buffer->titlekeys[0]) ) continue; } memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0])); memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0])); _titlekey_count++; i++; } } tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); gfx_con_setpos(0, save_y); if (is_personalized) { TPRINTFARGS("\n%kPersonalized... ", colors[(color_idx++) % 6]); } else { TPRINTFARGS("\n%kCommon... ", colors[(color_idx++) % 6]); } gfx_printf("\n\n\n"); return true; } static bool _derive_sd_seed(key_derivation_ctx_t *keys) { FIL fp; u32 read_bytes = 0; char *private_path = malloc(200); strcpy(private_path, "sd:/"); if (emu_cfg.nintendo_path && (emu_cfg.enabled || !h_cfg.emummc_force_disable)) { strcat(private_path, emu_cfg.nintendo_path); } else { strcat(private_path, "Nintendo"); } strcat(private_path, "/Contents/private"); FRESULT fr = f_open(&fp, private_path, FA_READ | FA_OPEN_EXISTING); free(private_path); if (fr) { EPRINTF("Unable to open SD seed vector. Skipping."); return false; } // get sd seed verification vector if (f_read(&fp, keys->temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) { EPRINTF("Unable to read SD seed vector. Skipping."); f_close(&fp); return false; } f_close(&fp); // this file is small enough that parsing the savedata properly is slower if (f_open(&fp, "bis:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to open ns_appman save.\nSkipping SD seed."); return false; } u8 read_buf[0x20] __attribute__((aligned(4))) = {0}; for (u32 i = SZ_32K; i < f_size(&fp); i += SZ_16K) { if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20) break; if (!memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key))) { memcpy(keys->sd_seed, read_buf + 0x10, sizeof(keys->sd_seed)); break; } } f_close(&fp); TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]); return true; } static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) { if (!_key_exists(keys->eticket_rsa_kek)) { return false; } gfx_printf("%kTitlekeys... \n", colors[(color_idx++) % 6]); rsa_keypair_t rsa_keypair = {0}; if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, titlekey_buffer->read_buffer)) { EPRINTF("Unable to read PRODINFO."); return false; } se_aes_xts_crypt(1, 0, DECRYPT, 0, titlekey_buffer->read_buffer, titlekey_buffer->read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE); nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer; if (cal0->magic != MAGIC_CAL0) { EPRINTF("Invalid CAL0 magic. Check BIS key 0."); return false; } u32 keypair_generation = 0; const void *eticket_device_key = NULL; const void *eticket_iv = NULL; if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, 0x24E)) { eticket_device_key = cal0->ext_ecc_rsa2048_eticket_key; eticket_iv = cal0->ext_ecc_rsa2048_eticket_key_iv; // settings sysmodule manually zeroes this out below cal version 9 keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver; } else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, 0x22E)) { eticket_device_key = cal0->rsa2048_eticket_key; eticket_iv = cal0->rsa2048_eticket_key_iv; } else { EPRINTF("Crc16 error reading device key."); return false; } if (keypair_generation) { keypair_generation--; for (u32 i = 0; i < AES_128_KEY_SIZE; i++) keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; u32 temp_device_key[AES_128_KEY_SIZE / 4] = {0}; _get_device_key(7, keys, temp_device_key, keypair_generation); _generate_kek(7, eticket_rsa_kekek_source, temp_device_key, keys->temp_key, NULL); se_aes_crypt_block_ecb(7, DECRYPT, keys->eticket_rsa_kek_personalized, eticket_rsa_kek_source); memcpy(keys->temp_key, keys->eticket_rsa_kek_personalized, sizeof(keys->temp_key)); } else { memcpy(keys->temp_key, keys->eticket_rsa_kek, sizeof(keys->temp_key)); } se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key)); se_aes_crypt_ctr(6, &rsa_keypair, sizeof(rsa_keypair), eticket_device_key, sizeof(rsa_keypair), eticket_iv); // Check public exponent is 65537 big endian if (_read_be_u32(rsa_keypair.public_exponent, 0) != 65537) { EPRINTF("Invalid public exponent."); return false; } if (!_test_key_pair(rsa_keypair.public_exponent, rsa_keypair.private_exponent, rsa_keypair.modulus)) { EPRINTF("Invalid keypair. Check eticket_rsa_kek."); return false; } se_rsa_key_set(0, rsa_keypair.modulus, sizeof(rsa_keypair.modulus), rsa_keypair.private_exponent, sizeof(rsa_keypair.private_exponent)); const u32 buf_size = SZ_16K; _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL); _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &rsa_keypair); gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count); return true; } static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) { // Set BIS keys. // PRODINFO/PRODINFOF se_aes_key_set(0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE); se_aes_key_set(1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE); // SAFE se_aes_key_set(2, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE); se_aes_key_set(3, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE); // SYSTEM/USER se_aes_key_set(4, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE); se_aes_key_set(5, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE); if (!emummc_storage_set_mmc_partition(EMMC_GPP)) { EPRINTF("Unable to set partition."); return false; } // Parse eMMC GPT. LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &emmc_storage); emmc_part_t *system_part = nx_emmc_part_find(&gpt, "SYSTEM"); if (!system_part) { EPRINTF("Unable to locate System partition."); nx_emmc_gpt_free(&gpt); return false; } nx_emmc_bis_init(system_part); if (f_mount(&emmc_fs, "bis:", 1)) { EPRINTF("Unable to mount system partition."); nx_emmc_gpt_free(&gpt); return false; } if (!sd_mount()) { EPRINTF("Unable to mount SD."); } else if (!_derive_sd_seed(keys)) { EPRINTF("Unable to get SD seed."); } bool res = _derive_titlekeys(keys, titlekey_buffer); if (!res) { EPRINTF("Unable to derive titlekeys."); } f_mount(NULL, "bis:", 1); nx_emmc_gpt_free(&gpt); return res; } // The security engine supports partial key override for locked keyslots // This allows for a manageable brute force on a PC // Then the Mariko AES class keys, KEK, BEK, unique SBK and SSK can be recovered static void _save_mariko_partial_keys(u32 start, u32 count, bool append) { if (start + count > SE_AES_KEYSLOT_COUNT) { return; } u32 pos = 0; u32 zeros[AES_128_KEY_SIZE / 4] = {0}; u8 *data = malloc(4 * AES_128_KEY_SIZE); char *text_buffer = calloc(1, 0x100 * count); for (u32 ks = start; ks < start + count; ks++) { // Check if key is as expected if (ks < ARRAY_SIZE(mariko_key_vectors)) { se_aes_crypt_block_ecb(ks, DECRYPT, &data[0], mariko_key_vectors[ks]); if (_key_exists(data)) { EPRINTFARGS("Failed to validate keyslot %d.", ks); continue; } } // Encrypt zeros with complete key se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * AES_128_KEY_SIZE], zeros); // We only need to overwrite 3 of the dwords of the key for (u32 i = 0; i < 3; i++) { // Overwrite ith dword of key with zeros se_aes_key_partial_set(ks, i, 0); // Encrypt zeros with more of the key zeroed out se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * AES_128_KEY_SIZE], zeros); } // Skip saving key if two results are the same indicating unsuccessful overwrite or empty slot if (memcmp(&data[0], &data[SE_KEY_128_SIZE], AES_128_KEY_SIZE) == 0) { EPRINTFARGS("Failed to overwrite keyslot %d.", ks); continue; } pos += s_printf(&text_buffer[pos], "%d\n", ks); for (u32 i = 0; i < 4; i++) { for (u32 j = 0; j < AES_128_KEY_SIZE; j++) pos += s_printf(&text_buffer[pos], "%02x", data[i * AES_128_KEY_SIZE + j]); pos += s_printf(&text_buffer[pos], " "); } pos += s_printf(&text_buffer[pos], "\n"); } free(data); if (strlen(text_buffer) == 0) { EPRINTFARGS("Failed to dump partial keys %d-%d.", start, start + count - 1); return; } FIL fp; u32 res = 0; BYTE mode = FA_WRITE; if (append) { mode |= FA_OPEN_APPEND; } else { mode |= FA_CREATE_ALWAYS; } res = f_open(&fp, "sd:/switch/partialaes.keys", mode); if (res) { EPRINTF("Unable to write partial keys to SD."); return; } f_write(&fp, text_buffer, strlen(text_buffer), NULL); f_close(&fp); gfx_printf("%kWrote partials to sd:/switch/partialaes.keys\n", colors[(color_idx++) % 6]); free(text_buffer); } static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { char *text_buffer = NULL; if (!sd_mount()) { EPRINTF("Unable to mount SD."); return; } u32 text_buffer_size = MAX(_titlekey_count * sizeof(titlekey_text_buffer_t) + 1, SZ_16K); text_buffer = (char *)calloc(1, text_buffer_size); SAVE_KEY(aes_kek_generation_source); SAVE_KEY(aes_key_generation_source); SAVE_KEY(bis_kek_source); SAVE_KEY_FAMILY_VAR(bis_key, keys->bis_key, 0); SAVE_KEY_FAMILY_VAR(bis_key_source, bis_key_sources, 0); SAVE_KEY_VAR(device_key, keys->device_key); SAVE_KEY_VAR(device_key_4x, keys->device_key_4x); SAVE_KEY_VAR(eticket_rsa_kek, keys->eticket_rsa_kek); SAVE_KEY_VAR(eticket_rsa_kek_personalized, keys->eticket_rsa_kek_personalized); if (is_dev) { SAVE_KEY_VAR(eticket_rsa_kek_source, eticket_rsa_kek_source_dev); } else { SAVE_KEY(eticket_rsa_kek_source); } SAVE_KEY(eticket_rsa_kekek_source); SAVE_KEY(header_kek_source); SAVE_KEY_VAR(header_key, keys->header_key); SAVE_KEY(header_key_source); SAVE_KEY_FAMILY_VAR(key_area_key_application, keys->key_area_key[0], 0); SAVE_KEY_VAR(key_area_key_application_source, key_area_key_sources[0]); SAVE_KEY_FAMILY_VAR(key_area_key_ocean, keys->key_area_key[1], 0); SAVE_KEY_VAR(key_area_key_ocean_source, key_area_key_sources[1]); SAVE_KEY_FAMILY_VAR(key_area_key_system, keys->key_area_key[2], 0); SAVE_KEY_VAR(key_area_key_system_source, key_area_key_sources[2]); SAVE_KEY_FAMILY_VAR(keyblob, keys->keyblob, 0); SAVE_KEY_FAMILY_VAR(keyblob_key, keys->keyblob_key, 0); SAVE_KEY_FAMILY_VAR(keyblob_key_source, keyblob_key_sources, 0); SAVE_KEY_FAMILY_VAR(keyblob_mac_key, keys->keyblob_mac_key, 0); SAVE_KEY(keyblob_mac_key_source); if (is_dev) { SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources_dev, 5); } else { SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources, 5); } SAVE_KEY_FAMILY_VAR(master_kek, keys->master_kek, 0); SAVE_KEY_FAMILY_VAR(master_kek_source, master_kek_sources, KB_FIRMWARE_VERSION_620); SAVE_KEY_FAMILY_VAR(master_key, keys->master_key, 0); SAVE_KEY(master_key_source); SAVE_KEY_FAMILY_VAR(package1_key, keys->package1_key, 0); SAVE_KEY_FAMILY_VAR(package2_key, keys->package2_key, 0); SAVE_KEY(package2_key_source); SAVE_KEY(per_console_key_source); SAVE_KEY(retail_specific_aes_key_source); for (u32 i = 0; i < AES_128_KEY_SIZE; i++) keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; SAVE_KEY_VAR(rsa_oaep_kek_generation_source, keys->temp_key); for (u32 i = 0; i < AES_128_KEY_SIZE; i++) keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; SAVE_KEY_VAR(rsa_private_kek_generation_source, keys->temp_key); SAVE_KEY(save_mac_kek_source); SAVE_KEY_VAR(save_mac_key, keys->save_mac_key); SAVE_KEY(save_mac_key_source); SAVE_KEY(save_mac_sd_card_kek_source); SAVE_KEY(save_mac_sd_card_key_source); SAVE_KEY(sd_card_custom_storage_key_source); SAVE_KEY(sd_card_kek_source); SAVE_KEY(sd_card_nca_key_source); SAVE_KEY(sd_card_save_key_source); SAVE_KEY_VAR(sd_seed, keys->sd_seed); SAVE_KEY_VAR(secure_boot_key, keys->sbk); SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek); SAVE_KEY(ssl_rsa_kek_source_x); SAVE_KEY(ssl_rsa_kek_source_y); SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0); SAVE_KEY(titlekek_source); SAVE_KEY_VAR(tsec_key, keys->tsec_key); const u32 root_key_ver = 2; char root_key_name[21] = "tsec_root_key_00"; s_printf(root_key_name + 14, "%02x", root_key_ver); _save_key(root_key_name, keys->tsec_root_key, AES_128_KEY_SIZE, text_buffer); gfx_printf("\n%k Found %d %s keys.\n\n", colors[(color_idx++) % 6], _key_count, is_dev ? "dev" : "prod"); gfx_printf("%kFound through master_key_%02x.\n\n", colors[(color_idx++) % 6], KB_FIRMWARE_VERSION_MAX); f_mkdir("sd:/switch"); char keyfile_path[30] = "sd:/switch/prod.keys"; if (is_dev) { s_printf(&keyfile_path[11], "dev.keys"); } FILINFO fno; if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path); } else EPRINTF("Unable to save keys to SD."); if (h_cfg.t210b01) { _save_mariko_partial_keys(12, 4, true); } if (_titlekey_count == 0 || !titlekey_buffer) { free(text_buffer); return; } memset(text_buffer, 0, text_buffer_size); titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer; for (u32 i = 0; i < _titlekey_count; i++) { for (u32 j = 0; j < AES_128_KEY_SIZE; j++) s_printf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]); s_printf(titlekey_text[i].equals, " = "); for (u32 j = 0; j < AES_128_KEY_SIZE; j++) s_printf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]); s_printf(titlekey_text[i].newline, "\n"); } s_printf(&keyfile_path[11], "title.keys"); if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path); } else EPRINTF("Unable to save titlekeys to SD."); free(text_buffer); } static bool _check_keyslot_access() { u8 test_data[AES_128_KEY_SIZE] = {0}; const u8 test_ciphertext[AES_128_KEY_SIZE] = {0}; se_aes_key_set(8, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE); se_aes_crypt_block_ecb(8, DECRYPT, test_data, test_ciphertext); return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0; } static void _derive_keys() { if (!f_stat("sd:/switch/partialaes.keys", NULL)) { f_unlink("sd:/switch/partialaes.keys"); } minerva_periodic_training(); if (h_cfg.t210b01) { _save_mariko_partial_keys(0, 12, false); } minerva_periodic_training(); if (!_check_keyslot_access()) { EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip."); return; } u32 start_whole_operation_time = get_tmr_us(); if (emummc_storage_init_mmc()) { EPRINTF("Unable to init MMC."); } else { TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]); } minerva_periodic_training(); if (emmc_storage.initialized && !emummc_storage_set_mmc_partition(EMMC_BOOT0)) { EPRINTF("Unable to set partition."); emummc_storage_end(); } bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV; key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0}; key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys; // Master key derivation if (h_cfg.t210b01) { _derive_master_key_mariko(keys, is_dev); minerva_periodic_training(); _derive_master_keys_from_latest_key(keys, is_dev); } else { int res = _run_ams_keygen(keys); if (res) { return; } u8 *aes_keys = (u8 *)calloc(SZ_4K, 1); se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE); memcpy(&dev_keys.tsec_root_key, aes_keys + 11 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); memcpy(keys->tsec_key, aes_keys + 12 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); memcpy(&prod_keys.tsec_root_key, aes_keys + 13 * AES_128_KEY_SIZE, AES_128_KEY_SIZE); free(aes_keys); _derive_master_keys_from_latest_key(&prod_keys, false); minerva_periodic_training(); _derive_master_keys_from_latest_key(&dev_keys, true); minerva_periodic_training(); _derive_keyblob_keys(keys); } TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]); _derive_bis_keys(keys); TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]); minerva_periodic_training(); _derive_misc_keys(keys, is_dev); minerva_periodic_training(); _derive_non_unique_keys(&prod_keys, is_dev); minerva_periodic_training(); _derive_non_unique_keys(&dev_keys, is_dev); minerva_periodic_training(); _derive_per_generation_keys(&prod_keys); minerva_periodic_training(); _derive_per_generation_keys(&dev_keys); titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR; // Requires BIS key for SYSTEM partition if (!emmc_storage.initialized) { EPRINTF("eMMC not initialized.\nSkipping SD seed and titlekeys."); } else if (_key_exists(keys->bis_key[2])) { _derive_emmc_keys(keys, titlekey_buffer); } else { EPRINTF("Missing needed BIS keys.\nSkipping SD seed and titlekeys."); } end_time = get_tmr_us(); gfx_printf("%kLockpick totally done in %d us\n", colors[(color_idx++) % 6], end_time - start_whole_operation_time); if (h_cfg.t210b01) { // On Mariko, save only relevant key set _save_keys_to_sd(keys, titlekey_buffer, is_dev); } else { // On Erista, save both prod and dev key sets _save_keys_to_sd(&prod_keys, titlekey_buffer, false); _key_count = 0; _save_keys_to_sd(&dev_keys, NULL, true); } } void dump_keys() { minerva_change_freq(FREQ_1600); display_backlight_brightness(h_cfg.backlight, 1000); gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n", colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC); _key_count = 0; _titlekey_count = 0; color_idx = 0; start_time = get_tmr_us(); _derive_keys(); emummc_load_cfg(); // Ignore whether emummc is enabled. h_cfg.emummc_force_disable = emu_cfg.sector == 0 && !emu_cfg.path; emu_cfg.enabled = !h_cfg.emummc_force_disable; if (emmc_storage.initialized) { sdmmc_storage_end(&emmc_storage); } minerva_change_freq(FREQ_800); gfx_printf("\n%kPress VOL+ to save a screenshot\n or another button to return to the menu.\n\n", colors[(color_idx++) % 6]); u8 btn = btn_wait(); if (btn == BTN_VOL_UP) { int res = save_fb_to_bmp(); if (!res) { gfx_printf("%kScreenshot sd:/switch/lockpick_rcm.bmp saved.", colors[(color_idx++) % 6]); } else { EPRINTF("Screenshot failed."); } gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]); btn_wait(); } gfx_clear_grey(0x1B); } static void _save_key(const char *name, const void *data, u32 len, char *outbuf) { if (!_key_exists(data)) return; u32 pos = strlen(outbuf); pos += s_printf(&outbuf[pos], "%s = ", name); for (u32 i = 0; i < len; i++) pos += s_printf(&outbuf[pos], "%02x", *(u8*)(data + i)); s_printf(&outbuf[pos], "\n"); _key_count++; } static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf) { char *temp_name = calloc(1, 0x40); for (u32 i = 0; i < num_keys; i++) { s_printf(temp_name, "%s_%02x", name, i + start_key); _save_key(temp_name, data + i * len, len, outbuf); } free(temp_name); } static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) { if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) return; se_aes_key_set(ks, master_key, AES_128_KEY_SIZE); se_aes_unwrap_key(ks, ks, kek_seed); se_aes_unwrap_key(ks, ks, key_source); if (key_seed && _key_exists(key_seed)) se_aes_unwrap_key(ks, ks, key_seed); } static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) { se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE); u8 *d = (u8 *)dst; se_aes_crypt_ctr(6, d + 0x00, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); se_aes_crypt_ctr(6, d + 0x10, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]); // Apply tweak for (u32 i = 0; i < AES_128_KEY_SIZE; i++) { d[AES_128_KEY_SIZE + i] ^= secure_data_tweaks[0][i]; } } static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation) { if (fuse_read_bootrom_rev() >= 0x7F) { _get_device_key(ks, keys, keys->temp_key, key_generation); se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE); se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek) } else { _get_secure_data(keys, out_key); } } static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision) { if (revision == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) { memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE); return; } if (revision >= KB_FIRMWARE_VERSION_400) { revision -= KB_FIRMWARE_VERSION_400; } else { revision = 0; } u32 temp_key[AES_128_KEY_SIZE / 4] = {0}; se_aes_key_set(ks, keys->device_key_4x, AES_128_KEY_SIZE); se_aes_crypt_block_ecb(ks, DECRYPT, temp_key, device_master_key_source_sources[revision]); se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE); const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[revision] : device_master_kek_sources_dev[revision]; se_aes_unwrap_key(ks, ks, kek_source); se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key); } static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) { u8 plaintext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}, ciphertext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}, work[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0}; // 0xCAFEBABE plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe; se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE); se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE); se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4); se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE); return !memcmp(plaintext, work, RSA_2048_KEY_SIZE); }