/* * Copyright (c) 2019 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /*-----------------------------------------------------------------------*/ /* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */ /*-----------------------------------------------------------------------*/ /* If a working storage control module is available, it should be */ /* attached to the FatFs via a glue function rather than modifying it. */ /* This is an example of glue functions to attach various exsisting */ /* storage control modules to the FatFs module with a defined API. */ /*-----------------------------------------------------------------------*/ #include #include "diskio.h" /* FatFs lower layer API */ #include "../../mem/heap.h" #include "../../sec/se.h" #include "../../storage/nx_emmc.h" #include "../../storage/sdmmc.h" #define SDMMC_UPPER_BUFFER 0xB8000000 #define DRAM_START 0x80000000 extern sdmmc_storage_t sd_storage; extern sdmmc_storage_t storage; extern emmc_part_t *system_part; typedef struct { u32 sector; u32 visit_count; u8 tweak[0x10]; u8 cached_sector[0x200]; u8 align[8]; } sector_cache_t; #define MAX_SEC_CACHE_ENTRIES 64 static sector_cache_t *sector_cache = (sector_cache_t*)0x40022000; static u32 secindex = 0; DSTATUS disk_status ( BYTE pdrv /* Physical drive number to identify the drive */ ) { return 0; } DSTATUS disk_initialize ( BYTE pdrv /* Physical drive number to identify the drive */ ) { return 0; } static inline void _gf256_mul_x_le(void *block) { u8 *pdata = (u8 *)block; u32 carry = 0; for (u32 i = 0; i < 0x10; i++) { u8 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 7; } if (carry) pdata[0x0] ^= 0x87; } static inline int _emmc_xts(u32 ks1, u32 ks2, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u64 sec, void *dst, void *src, u32 secsize) { int res = 0; u8 *pdst = (u8 *)dst; u8 *psrc = (u8 *)src; if (regen_tweak) { for (int i = 0xF; i >= 0; i--) { tweak[i] = sec & 0xFF; sec >>= 8; } if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak)) goto out; } for (u32 i = 0; i < tweak_exp * 0x20; i++) _gf256_mul_x_le(tweak); u8 temptweak[0x10]; memcpy(temptweak, tweak, 0x10); //We are assuming a 0x10-aligned sector size in this implementation. for (u32 i = 0; i < secsize / 0x10; i++) { for (u32 j = 0; j < 0x10; j++) pdst[j] = psrc[j] ^ tweak[j]; _gf256_mul_x_le(tweak); psrc += 0x10; pdst += 0x10; } se_aes_crypt_ecb(ks2, 0, dst, secsize, src, secsize); pdst = (u8 *)dst; memcpy(tweak, temptweak, 0x10); for (u32 i = 0; i < secsize / 0x10; i++) { for (u32 j = 0; j < 0x10; j++) pdst[j] = pdst[j] ^ tweak[j]; _gf256_mul_x_le(tweak); pdst += 0x10; } res = 1; out:; return res; } DRESULT disk_read ( BYTE pdrv, /* Physical drive number to identify the drive */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Start sector in LBA */ UINT count /* Number of sectors to read */ ) { switch (pdrv) { case 0: return sdmmc_storage_read(&sd_storage, sector, count, buff) ? RES_OK : RES_ERROR; case 1:; __attribute__ ((aligned (16))) static u8 tweak[0x10]; __attribute__ ((aligned (16))) static u64 prev_cluster = -1; __attribute__ ((aligned (16))) static u32 prev_sector = 0; u32 tweak_exp = 0; bool regen_tweak = true, cache_sector = false; u32 s = 0; if (count == 1) { for ( ; s < secindex; s++) { if (sector_cache[s].sector == sector) { sector_cache[s].visit_count++; memcpy(buff, sector_cache[s].cached_sector, 0x200); memcpy(tweak, sector_cache[s].tweak, 0x10); prev_sector = sector; prev_cluster = sector / 0x20; return RES_OK; } } // add to cache if (s == secindex && s < MAX_SEC_CACHE_ENTRIES) { sector_cache[s].sector = sector; sector_cache[s].visit_count++; cache_sector = true; secindex++; } } if (nx_emmc_part_read(&storage, system_part, sector, count, buff)) { if (prev_cluster != sector / 0x20) { // sector in different cluster than last read prev_cluster = sector / 0x20; tweak_exp = sector % 0x20; } else if (sector > prev_sector) { // sector in same cluster and past last sector tweak_exp = sector - prev_sector - 1; regen_tweak = false; } else { // sector in same cluster and before or same as last sector tweak_exp = sector % 0x20; } // fatfs will never pull more than a cluster _emmc_xts(9, 8, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, buff, count * 0x200); if (cache_sector) { memcpy(sector_cache[s].cached_sector, buff, 0x200); memcpy(sector_cache[s].tweak, tweak, 0x10); } prev_sector = sector + count - 1; return RES_OK; } return RES_ERROR; } return RES_ERROR; } DRESULT disk_write ( BYTE pdrv, /* Physical drive number to identify the drive */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Start sector in LBA */ UINT count /* Number of sectors to write */ ) { if (pdrv == 1) return RES_WRPRT; return sdmmc_storage_write(&sd_storage, sector, count, (void *)buff) ? RES_OK : RES_ERROR; } DRESULT disk_ioctl ( BYTE pdrv, /* Physical drive number (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { return RES_OK; }