237 lines
9.6 KiB
C
237 lines
9.6 KiB
C
|
/*
|
||
|
* Copyright (c) 2019-2020 shchmue
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms and conditions of the GNU General Public License,
|
||
|
* version 2, as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
ISC License
|
||
|
|
||
|
hactool Copyright (c) 2018, SciresM
|
||
|
|
||
|
Permission to use, copy, modify, and/or distribute this software for any
|
||
|
purpose with or without fee is hereby granted, provided that the above
|
||
|
copyright notice and this permission notice appear in all copies.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
|
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
|
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
|
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "storage.h"
|
||
|
|
||
|
#include "cached_storage.h"
|
||
|
#include "hierarchical_duplex_storage.h"
|
||
|
#include "hierarchical_integrity_verification_storage.h"
|
||
|
#include "journal_storage.h"
|
||
|
#include "remap_storage.h"
|
||
|
|
||
|
#include <gfx_utils.h>
|
||
|
#include <libs/fatfs/ff.h>
|
||
|
|
||
|
#include <string.h>
|
||
|
|
||
|
void substorage_init(substorage *this, const storage_vt *vt, void *ctx, uint64_t offset, uint64_t length) {
|
||
|
storage_init(&this->base_storage, vt, ctx);
|
||
|
this->offset = offset;
|
||
|
this->length = length;
|
||
|
}
|
||
|
|
||
|
bool substorage_init_from_other(substorage *this, const substorage *other, uint64_t offset, uint64_t length) {
|
||
|
if (offset + length > other->length) {
|
||
|
EPRINTF("Invalid size for substorage init!");
|
||
|
EPRINTFARGS("ofs %x len %x size %x", (uint32_t)offset, (uint32_t)length, (uint32_t)other->length);
|
||
|
return false;
|
||
|
}
|
||
|
substorage_init(this, other->base_storage.vt, other->base_storage.ctx, other->offset + offset, length);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void sector_storage_init(sector_storage *ctx, substorage *base_storage, uint32_t sector_size) {
|
||
|
memcpy(&ctx->base_storage, base_storage, sizeof(substorage));
|
||
|
ctx->sector_size = sector_size;
|
||
|
ctx->length = base_storage->length;
|
||
|
ctx->sector_count = (uint32_t)(DIV_ROUND_UP(ctx->length, ctx->sector_size));
|
||
|
}
|
||
|
|
||
|
uint32_t sector_storage_read(sector_storage *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
uint64_t remaining = count;
|
||
|
uint64_t in_offset = offset;
|
||
|
uint32_t out_offset = 0;
|
||
|
uint32_t sector_size = ctx->sector_size;
|
||
|
|
||
|
while (remaining) {
|
||
|
uint32_t sector_pos = (uint32_t)(in_offset % sector_size);
|
||
|
uint32_t bytes_to_read = MIN((uint32_t)remaining, (uint32_t)(sector_size - sector_pos));
|
||
|
|
||
|
substorage_read(&ctx->base_storage, (uint8_t *)buffer + out_offset, in_offset, bytes_to_read);
|
||
|
|
||
|
out_offset += bytes_to_read;
|
||
|
in_offset += bytes_to_read;
|
||
|
remaining -= bytes_to_read;
|
||
|
}
|
||
|
|
||
|
return out_offset;
|
||
|
}
|
||
|
|
||
|
uint32_t sector_storage_write(sector_storage *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
uint64_t remaining = count;
|
||
|
uint64_t in_offset = offset;
|
||
|
uint32_t out_offset = 0;
|
||
|
uint32_t sector_size = ctx->sector_size;
|
||
|
|
||
|
while (remaining) {
|
||
|
uint32_t sector_pos = (uint32_t)(in_offset % sector_size);
|
||
|
uint32_t bytes_to_write = MIN((uint32_t)remaining, (uint32_t)(sector_size - sector_pos));
|
||
|
|
||
|
substorage_write(&ctx->base_storage, (uint8_t *)buffer + out_offset, in_offset, bytes_to_write);
|
||
|
|
||
|
out_offset += bytes_to_write;
|
||
|
in_offset += bytes_to_write;
|
||
|
remaining -= bytes_to_write;
|
||
|
}
|
||
|
|
||
|
return out_offset;
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_integrity_verification_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
hierarchical_integrity_verification_storage_ctx_t *storage = (hierarchical_integrity_verification_storage_ctx_t *)ctx;
|
||
|
return save_cached_storage_read(storage->data_level, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_integrity_verification_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
hierarchical_integrity_verification_storage_ctx_t *storage = (hierarchical_integrity_verification_storage_ctx_t *)ctx;
|
||
|
return save_cached_storage_write(storage->data_level, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
void save_hierarchical_integrity_verification_storage_get_size_wrapper(void *ctx, uint64_t *out_size) {
|
||
|
hierarchical_integrity_verification_storage_ctx_t *storage = (hierarchical_integrity_verification_storage_ctx_t *)ctx;
|
||
|
*out_size = storage->length;
|
||
|
}
|
||
|
|
||
|
uint32_t memory_storage_read(uint8_t *storage, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
memcpy(buffer, storage + offset, count);
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
uint32_t memory_storage_write(uint8_t *storage, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
memcpy(storage + offset, buffer, count);
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
uint32_t memory_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return memory_storage_read((uint8_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t memory_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return memory_storage_write((uint8_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_file_read(FIL *fp, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
UINT bytes_read = 0;
|
||
|
|
||
|
if (f_lseek(fp, offset) || f_read(fp, buffer, count, &bytes_read) || bytes_read != count) {
|
||
|
EPRINTFARGS("Failed to read file at offset %x!\nRead %x bytes. Req %x bytes.", (uint32_t)offset, bytes_read, (uint32_t)count);
|
||
|
return 0;
|
||
|
}
|
||
|
return bytes_read;
|
||
|
}
|
||
|
|
||
|
uint32_t save_file_write(FIL *fp, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
UINT bytes_written = 0;
|
||
|
if (f_lseek(fp, offset) || f_write(fp, buffer, count, &bytes_written) || bytes_written != count) {
|
||
|
EPRINTFARGS("Failed to write file at offset %x!", (uint32_t)offset);
|
||
|
return 0;
|
||
|
}
|
||
|
return bytes_written;
|
||
|
}
|
||
|
|
||
|
void save_file_get_size(FIL *fp, uint64_t *out_size) {
|
||
|
*out_size = f_size(fp);
|
||
|
}
|
||
|
|
||
|
uint32_t save_file_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_file_read((FIL *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_file_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_file_write((FIL *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
void save_file_get_size_wrapper(void *ctx, uint64_t *out_size) {
|
||
|
save_file_get_size((FIL *)ctx, out_size);
|
||
|
}
|
||
|
|
||
|
uint32_t save_remap_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_remap_storage_read((remap_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_remap_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_remap_storage_write((remap_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
void save_remap_storage_get_size_wrapper(__attribute__((unused)) void *ctx, uint64_t *out_size) {
|
||
|
*out_size = -1;
|
||
|
}
|
||
|
|
||
|
uint32_t save_journal_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_journal_storage_read((journal_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_journal_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_journal_storage_write((journal_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
void save_journal_storage_get_size_wrapper(void *ctx, uint64_t *out_size) {
|
||
|
journal_storage_ctx_t *journal = (journal_storage_ctx_t *)ctx;
|
||
|
*out_size = journal->length;
|
||
|
}
|
||
|
|
||
|
uint32_t save_ivfc_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_ivfc_storage_read((integrity_verification_storage_ctx_t *)ctx, buffer, offset, count) ? count : 0;
|
||
|
}
|
||
|
|
||
|
uint32_t save_ivfc_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_ivfc_storage_write((integrity_verification_storage_ctx_t *)ctx, buffer, offset, count) ? count : 0;
|
||
|
}
|
||
|
|
||
|
void save_ivfc_storage_get_size_wrapper(void *ctx, uint64_t *out_size) {
|
||
|
integrity_verification_storage_ctx_t *ivfc = (integrity_verification_storage_ctx_t *)ctx;
|
||
|
*out_size = ivfc->base_storage.length;
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_duplex_storage_read(hierarchical_duplex_storage_ctx_t *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_duplex_storage_read(ctx->data_layer, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_duplex_storage_write(hierarchical_duplex_storage_ctx_t *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_duplex_storage_write(ctx->data_layer, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_duplex_storage_read_wrapper(void *ctx, void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_hierarchical_duplex_storage_read((hierarchical_duplex_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
uint32_t save_hierarchical_duplex_storage_write_wrapper(void *ctx, const void *buffer, uint64_t offset, uint64_t count) {
|
||
|
return save_hierarchical_duplex_storage_write((hierarchical_duplex_storage_ctx_t *)ctx, buffer, offset, count);
|
||
|
}
|
||
|
|
||
|
void save_hierarchical_duplex_storage_get_size_wrapper(void *ctx, uint64_t *out_size) {
|
||
|
hierarchical_duplex_storage_ctx_t *duplex = (hierarchical_duplex_storage_ctx_t *)ctx;
|
||
|
*out_size = duplex->_length;
|
||
|
}
|