180 lines
6.8 KiB
Python
180 lines
6.8 KiB
Python
|
"""
|
||
|
overfitting
|
||
|
~~~~~~~~~~~
|
||
|
|
||
|
Plot graphs to illustrate the problem of overfitting.
|
||
|
"""
|
||
|
|
||
|
# Standard library
|
||
|
import json
|
||
|
import random
|
||
|
import sys
|
||
|
|
||
|
# My library
|
||
|
sys.path.append('../src/')
|
||
|
import mnist_loader
|
||
|
import network2
|
||
|
|
||
|
# Third-party libraries
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def main(filename, num_epochs,
|
||
|
training_cost_xmin=200,
|
||
|
test_accuracy_xmin=200,
|
||
|
test_cost_xmin=0,
|
||
|
training_accuracy_xmin=0,
|
||
|
training_set_size=1000,
|
||
|
lmbda=0.0):
|
||
|
"""``filename`` is the name of the file where the results will be
|
||
|
stored. ``num_epochs`` is the number of epochs to train for.
|
||
|
``training_set_size`` is the number of images to train on.
|
||
|
``lmbda`` is the regularization parameter. The other parameters
|
||
|
set the epochs at which to start plotting on the x axis.
|
||
|
"""
|
||
|
run_network(filename, num_epochs, training_set_size, lmbda)
|
||
|
make_plots(filename, num_epochs,
|
||
|
training_cost_xmin,
|
||
|
test_accuracy_xmin,
|
||
|
test_cost_xmin,
|
||
|
training_accuracy_xmin,
|
||
|
training_set_size)
|
||
|
|
||
|
def run_network(filename, num_epochs, training_set_size=1000, lmbda=0.0):
|
||
|
"""Train the network for ``num_epochs`` on ``training_set_size``
|
||
|
images, and store the results in ``filename``. Those results can
|
||
|
later be used by ``make_plots``. Note that the results are stored
|
||
|
to disk in large part because it's convenient not to have to
|
||
|
``run_network`` each time we want to make a plot (it's slow).
|
||
|
|
||
|
"""
|
||
|
# Make results more easily reproducible
|
||
|
random.seed(12345678)
|
||
|
np.random.seed(12345678)
|
||
|
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
|
||
|
net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost())
|
||
|
net.large_weight_initializer()
|
||
|
test_cost, test_accuracy, training_cost, training_accuracy \
|
||
|
= net.SGD(training_data[:training_set_size], num_epochs, 10, 0.5,
|
||
|
evaluation_data=test_data, lmbda = lmbda,
|
||
|
monitor_evaluation_cost=True,
|
||
|
monitor_evaluation_accuracy=True,
|
||
|
monitor_training_cost=True,
|
||
|
monitor_training_accuracy=True)
|
||
|
f = open(filename, "w")
|
||
|
json.dump([test_cost, test_accuracy, training_cost, training_accuracy], f)
|
||
|
f.close()
|
||
|
|
||
|
def make_plots(filename, num_epochs,
|
||
|
training_cost_xmin=200,
|
||
|
test_accuracy_xmin=200,
|
||
|
test_cost_xmin=0,
|
||
|
training_accuracy_xmin=0,
|
||
|
training_set_size=1000):
|
||
|
"""Load the results from ``filename``, and generate the corresponding
|
||
|
plots. """
|
||
|
f = open(filename, "r")
|
||
|
test_cost, test_accuracy, training_cost, training_accuracy \
|
||
|
= json.load(f)
|
||
|
f.close()
|
||
|
plot_training_cost(training_cost, num_epochs, training_cost_xmin)
|
||
|
plot_test_accuracy(test_accuracy, num_epochs, test_accuracy_xmin)
|
||
|
plot_test_cost(test_cost, num_epochs, test_cost_xmin)
|
||
|
plot_training_accuracy(training_accuracy, num_epochs,
|
||
|
training_accuracy_xmin, training_set_size)
|
||
|
plot_overlay(test_accuracy, training_accuracy, num_epochs,
|
||
|
min(test_accuracy_xmin, training_accuracy_xmin),
|
||
|
training_set_size)
|
||
|
|
||
|
def plot_training_cost(training_cost, num_epochs, training_cost_xmin):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.plot(np.arange(training_cost_xmin, num_epochs),
|
||
|
training_cost[training_cost_xmin:num_epochs],
|
||
|
color='#2A6EA6')
|
||
|
ax.set_xlim([training_cost_xmin, num_epochs])
|
||
|
ax.grid(True)
|
||
|
ax.set_xlabel('Epoch')
|
||
|
ax.set_title('Cost on the training data')
|
||
|
plt.show()
|
||
|
|
||
|
def plot_test_accuracy(test_accuracy, num_epochs, test_accuracy_xmin):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.plot(np.arange(test_accuracy_xmin, num_epochs),
|
||
|
[accuracy/100.0
|
||
|
for accuracy in test_accuracy[test_accuracy_xmin:num_epochs]],
|
||
|
color='#2A6EA6')
|
||
|
ax.set_xlim([test_accuracy_xmin, num_epochs])
|
||
|
ax.grid(True)
|
||
|
ax.set_xlabel('Epoch')
|
||
|
ax.set_title('Accuracy (%) on the test data')
|
||
|
plt.show()
|
||
|
|
||
|
def plot_test_cost(test_cost, num_epochs, test_cost_xmin):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.plot(np.arange(test_cost_xmin, num_epochs),
|
||
|
test_cost[test_cost_xmin:num_epochs],
|
||
|
color='#2A6EA6')
|
||
|
ax.set_xlim([test_cost_xmin, num_epochs])
|
||
|
ax.grid(True)
|
||
|
ax.set_xlabel('Epoch')
|
||
|
ax.set_title('Cost on the test data')
|
||
|
plt.show()
|
||
|
|
||
|
def plot_training_accuracy(training_accuracy, num_epochs,
|
||
|
training_accuracy_xmin, training_set_size):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.plot(np.arange(training_accuracy_xmin, num_epochs),
|
||
|
[accuracy*100.0/training_set_size
|
||
|
for accuracy in training_accuracy[training_accuracy_xmin:num_epochs]],
|
||
|
color='#2A6EA6')
|
||
|
ax.set_xlim([training_accuracy_xmin, num_epochs])
|
||
|
ax.grid(True)
|
||
|
ax.set_xlabel('Epoch')
|
||
|
ax.set_title('Accuracy (%) on the training data')
|
||
|
plt.show()
|
||
|
|
||
|
def plot_overlay(test_accuracy, training_accuracy, num_epochs, xmin,
|
||
|
training_set_size):
|
||
|
fig = plt.figure()
|
||
|
ax = fig.add_subplot(111)
|
||
|
ax.plot(np.arange(xmin, num_epochs),
|
||
|
[accuracy/100.0 for accuracy in test_accuracy],
|
||
|
color='#2A6EA6',
|
||
|
label="Accuracy on the test data")
|
||
|
ax.plot(np.arange(xmin, num_epochs),
|
||
|
[accuracy*100.0/training_set_size
|
||
|
for accuracy in training_accuracy],
|
||
|
color='#FFA933',
|
||
|
label="Accuracy on the training data")
|
||
|
ax.grid(True)
|
||
|
ax.set_xlim([xmin, num_epochs])
|
||
|
ax.set_xlabel('Epoch')
|
||
|
ax.set_ylim([90, 100])
|
||
|
plt.legend(loc="lower right")
|
||
|
plt.show()
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
filename = raw_input("Enter a file name: ")
|
||
|
num_epochs = int(raw_input(
|
||
|
"Enter the number of epochs to run for: "))
|
||
|
training_cost_xmin = int(raw_input(
|
||
|
"training_cost_xmin (suggest 200): "))
|
||
|
test_accuracy_xmin = int(raw_input(
|
||
|
"test_accuracy_xmin (suggest 200): "))
|
||
|
test_cost_xmin = int(raw_input(
|
||
|
"test_cost_xmin (suggest 0): "))
|
||
|
training_accuracy_xmin = int(raw_input(
|
||
|
"training_accuracy_xmin (suggest 0): "))
|
||
|
training_set_size = int(raw_input(
|
||
|
"Training set size (suggest 1000): "))
|
||
|
lmbda = float(raw_input(
|
||
|
"Enter the regularization parameter, lambda (suggest: 5.0): "))
|
||
|
main(filename, num_epochs, training_cost_xmin,
|
||
|
test_accuracy_xmin, test_cost_xmin, training_accuracy_xmin,
|
||
|
training_set_size, lmbda)
|