TIPE-OperationValkyrie-Absobel/fig/multiple_eta.py

74 lines
2.0 KiB
Python
Raw Normal View History

2021-05-30 21:31:10 +02:00
"""multiple_eta
~~~~~~~~~~~~~~~
This program shows how different values for the learning rate affect
training. In particular, we'll plot out how the cost changes using
three different values for eta.
"""
# Standard library
import json
import random
import sys
# My library
sys.path.append('../src/')
import mnist_loader
import network2
# Third-party libraries
import matplotlib.pyplot as plt
import numpy as np
# Constants
LEARNING_RATES = [0.025, 0.25, 2.5]
COLORS = ['#2A6EA6', '#FFCD33', '#FF7033']
NUM_EPOCHS = 30
def main():
run_networks()
make_plot()
def run_networks():
"""Train networks using three different values for the learning rate,
and store the cost curves in the file ``multiple_eta.json``, where
they can later be used by ``make_plot``.
"""
# Make results more easily reproducible
random.seed(12345678)
np.random.seed(12345678)
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
results = []
for eta in LEARNING_RATES:
print "\nTrain a network using eta = "+str(eta)
net = network2.Network([784, 30, 10])
results.append(
net.SGD(training_data, NUM_EPOCHS, 10, eta, lmbda=5.0,
evaluation_data=validation_data,
monitor_training_cost=True))
f = open("multiple_eta.json", "w")
json.dump(results, f)
f.close()
def make_plot():
f = open("multiple_eta.json", "r")
results = json.load(f)
f.close()
fig = plt.figure()
ax = fig.add_subplot(111)
for eta, result, color in zip(LEARNING_RATES, results, COLORS):
_, _, training_cost, _ = result
ax.plot(np.arange(NUM_EPOCHS), training_cost, "o-",
label="$\eta$ = "+str(eta),
color=color)
ax.set_xlim([0, NUM_EPOCHS])
ax.set_xlabel('Epoch')
ax.set_ylabel('Cost')
plt.legend(loc='upper right')
plt.show()
if __name__ == "__main__":
main()